Recent improvements in additive manufacturing technologies may facilitate the use of customized 3D printed grafts for horizontal and vertical augmentation of the atrophic alveolar ridge. The accurate fit of such grafts could reduce the clinical treatment time and contribute optimal bone regeneration. The aim of this in vitro study was to evaluate the marginal and internal fit of 3D printed resin grafts as they could be used for alveolar ridge augmentation. Alveolar ridge morphologic data were derived from the Cone Beam Computed Tomography (CBCT) scans of six patients with alveolar bone defects. These data were transferred to a segmentation program to produce virtual 3D reconstructions of the alveolar ridge models. Using a Computer Aided Design (CAD) program, the alveolar bone defects were defined and customized grafts were designed and both the defects as well as the grafts generated (CAM) as 3D projects. These projects were imported into a 3D printer and were manufactured in resin. Hereafter, the grafts were fitted to the defect sites of the corresponding models and new CBCT scans were performed. Based on these scans, measurements were made at the marginal and internal part of the fitted grafts to evaluate the marginal and internal fit, respectively. The statistical analysis revealed that the mean marginal fit was significantly better (P < 0.05) than the mean internal fit. The fit of the grafts was dependent on the shape and on the size of the grafts. Specifically, the total void surface between the fitted graft and the corresponding defect site was significantly larger in the large-defect grafts than the small-defect grafts (P < 0.05). Within the limitations of the study, it could be demonstrated that it is possible to fabricate 3D printed resin grafts with acceptable fit in customized shapes, when combining CBCT scans and computer aided design and 3D printing techniques.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6464328PMC
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0215092PLOS

Publication Analysis

Top Keywords

alveolar ridge
20
marginal internal
16
internal fit
16
printed resin
12
grafts
12
resin grafts
12
cbct scans
12
fit
8
fit printed
8
ridge augmentation
8

Similar Publications

Background: It has been outlined that LTM (Lower third molar) extracted from patients in which grinding, cleaning, sterilization & demineralization prove to be highly effective as graft material for filling the alveolar socket of the very same patient. These investigations aim to assess the efficiency of ADDM (Autogenous Demineralized Dentin Matrix) graft in third molar extraction sockets.

Purpose: To check the effectiveness of ADDM as graft material in extraction socket by evaluating pain, swelling, trismus, PD (Probing Depth) and bone density.

View Article and Find Full Text PDF

Introduction And Aims: Implantation of the posterior maxilla with insufficient bone height faces challenges. Studies have shown that the use of ultrashort implants can avoid additional damage. This finite element analysis study aimed to evaluate the impacts of different lengths of ultrashort implants and three surgical approaches on stress, strain, and displacement in the posterior maxilla with varying bone heights.

View Article and Find Full Text PDF

Background: The aim of this study was to analyze the histomorphometric findings of autogenous tooth grafting (ATG) for alveolar ridge preservation (ARP), using graft material from extracted teeth. Variations by sex, age and location of extracted teeth, as well as any associated complications, were also assessed.

Materials And Methods: This prospective, single-cohort study was conducted using ATG placed in extraction sockets.

View Article and Find Full Text PDF

Histological and histomorphometric evaluation of natural bovine bone substitute with hyaluronate in socket preservation-a report of three cases.

J Mater Sci Mater Med

January 2025

Department of Anatomy, Histology, Embriology, Pathology Anatomy and Pathology Histology, Faculty of Dental Medicine and Health Osijek, J.J. Strossmayer University of Osijek, Osijek, Croatia.

Tooth extraction is physiologically followed by resorption of alveolar bone. Surgical method which aims to minimise this reduction in alveolar bone with a goal to provide enough bone volume for dental implant insertion is called socket preservation. The purpose of this article was to asses clinical, histomorphometric and histological results of socket preservation conducted with natural bovine bone substitute with hyaluronate.

View Article and Find Full Text PDF

It is well known that keratinized mucosa (KM) plays a crucial role for maintaining peri implant health and esthetic outcomes. The Strip Gingival Graft (SGG) technique, which involved an apically positioned flap (APF), in combination with an autogenous SGG and a xenogeneic collagen matrix (XCM), demonstrated its efficacy in re-establishing an adequate amount of KM width at implant sites. Nevertheless, it is still unclear whether harvesting the SGG from the palate (pSGG) or from the buccal aspect of natural dentition (bSGG) affects the esthetic outcomes at the augmented implant sites.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!