Predation risk and space use of a declining Dall sheep (Ovis dalli dalli) population.

PLoS One

Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada.

Published: January 2020

The abundance of ungulate populations may fluctuate in response to several limiting factors, including climate, diseases, and predation. In the northern Richardson Mountains, Canada, Dall sheep (Ovis dalli dalli) have undergone a major decline in the past decades and predation by grizzly bears (Ursus arctos) and wolves (Canis lupus) was suspected as a leading cause. To better understand the relationship between these three species located in this rugged and remote ecosystem, we relied on a combination of indirect methods. We investigated the apparent role of predation on the Dall sheep population using spatial ecology and stable isotopes. We examined seasonal variation in predation risk, focusing on how it may affect Dall sheep habitat use and sexual segregation, and we evaluated the proportion of Dall sheep in the diet of both predators using stable isotopes. The movements of the three species were monitored by satellite telemetry. Dall sheep habitat use patterns were analyzed using topographical features, greenness index, land cover, and apparent predation risk. The diets of grizzly bears and wolves were examined using a Bayesian mixing model for carbon and nitrogen stable isotopes. We found that Dall sheep habitat use varied seasonally, with different patterns for ewes and rams. Exposure to grizzly bear risk was higher for rams during summer, while ewes were further exposed to wolf apparent predation risk during winter. The importance of safe habitats for ewes was reflected in space use patterns. Stable isotopes analyses suggested that the diet of grizzly bears was largely from animal sources, with mountain mammals comprising about one quarter. Wolves mostly fed on both aquatic browsers and mountain mammals. Diet variation between individual predators suggested that some individuals specialized on mountain mammals, likely including Dall sheep. We conclude that grizzly bear and wolf apparent predation risk are important in driving Dall sheep habitat use and play a role in sexual segregation. Overall, this study presents an innovative combination of indirect methods that could be applied elsewhere to better understand predator-prey dynamics in remote ecosystems.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6464218PMC
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0215519PLOS

Publication Analysis

Top Keywords

dall sheep
36
predation risk
20
stable isotopes
16
sheep habitat
16
grizzly bears
12
apparent predation
12
mountain mammals
12
dall
9
sheep
9
predation
8

Similar Publications

Liaoning cashmere goat is an outstanding breed in China primarily for cashmere production, with strict controls against genetic outflow. Melatonin(MT) is a key factor affecting cashmere growth, and preliminary transcriptome sequencing indicated that melatonin upregulates the expression of the PIP5K1A gene in skin fibroblasts. To predict the physicochemical properties of PIP5K1A in Liaoning cashmere goats, ascertain the tissue localization of PIP5K1A in their skin, and explore the role and mechanism of PIP5K1A in the proliferation of skin fibroblasts.

View Article and Find Full Text PDF

Chromosome-level genome assembly, annotation, and population genomic resource of argali (Ovis ammon).

Sci Data

January 2025

Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, 830011, China.

Argali stands as the largest species among wild sheep in Central and East Asia, with a concerning rate of decline estimated at 30%. The intraspecific taxonomy of argali remains contentious due to limited genomic data and unclear geographic separation. In this study, we constructed a chromosome-level genome assembly and annotation for the Tibetan argali (O.

View Article and Find Full Text PDF

Deciphering the colostral-immunity transfer: from mammary gland to neonates small intestine.

Vet Res Commun

January 2025

Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan, China.

Colostrum, the initial mammary secretion produced by various mammals following birth, is a conduit for maternal immunity transfer in diverse mammalian species. Concurrently, many cellular processes are occurring in the neonatal small intestine to prepare it to receive molecular signals from a superfood essential for the neonate's health and development. During the prepartum colostrum secretion, the newborn intestine undergoes transient alterations in the intestinal barrier, primarily regulating immunoglobulin absorption.

View Article and Find Full Text PDF

Indian Himalayan Region (IHR) supports a plethora of biodiversity with a unique assemblage of many charismatic and endemic species. We assessed the genetic diversity, demographic history, and habitat suitability of blue sheep (Pseudois nayaur) in the IHR through the analysis of the mitochondrial DNA (mtDNA) control region (CR) and Cytochrome b gene, and 14 ecological predictor variables. We observed high genetic divergence and designated them into two genetic lineage groups, i.

View Article and Find Full Text PDF

Melanoma is among the most common malignancies and has recently exhibited increased resistance to treatments, resulting in a more aggressive disease course. Mesenchymal stem cells (MSCs) secrete cytokines both in vivo and in vitro, which regulate tumor cell signaling pathways and the tumor microenvironment, thereby influencing tumor progression. This study investigates the anti-melanogenesis effects of sheep umbilical cord mesenchymal stem cells (SUCMSCs) to assess their potential application in melanoma treatment.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!