Production of steroid hormones is complex and dependent upon steroidogenic enzymes, cofactors, receptors, and transporters expressed within a tissue. Collectively, these factors create an environment for tissue-specific steroid hormone profiles and potentially tissue-specific responses to drug administration. Our objective was to assess steroid production, including sulfated steroid metabolites in the boar testis, prostate, and liver following inhibition of aromatase, the enzyme that converts androgen precursors to estrogens. Boars were treated with the aromatase inhibitor, letrozole from 11 to 16 weeks of age and littermate boars received the canola oil vehicle. Steroid profiles were evaluated in testes, prostate, and livers of 16, 20, and 40 week old boars using liquid chromatography/mass spectrometry. Testis, prostate, and liver had unique steroid profiles in vehicle-treated animals. Only C18 steroid hormones were altered by treatment with the aromatase inhibitor, letrozole; no significant differences were detected in any of the C19 or C21 steroids evaluated. Testis was the only tissue with significantly decreased free estrogens following treatment with the aromatase inhibitor; estrone and estradiol concentrations were lower (p < 0.05) in testes from 16, 20, and 40 week letrozole-treated boars. However, concentrations of the sulfated conjugates, estrone-sulfate and estradiol-sulfate, were significantly decreased (p<0.05) in 16 and 20 week boar testes, prostates, and livers from letrozole-treated boars. Hence, the distribution of estrogens between the free and conjugated forms was altered in a tissue-specific manner following inhibition of aromatase. The results suggest sulfated testicular estrogens are important estrogen precursors for the prostate, potentially enabling peripheral target tissues to synthesize free estrogens in the male pig.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6464225 | PMC |
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0215390 | PLOS |
Pharmaceuticals (Basel)
January 2025
School of Pharmacy and Pharmaceutical Sciences, Panoz Institute, Trinity College Dublin, D02 PN40 Dublin, Ireland.
The synthesis of ()-1-(1,3-diphenylallyl)-1-1,2,4-triazoles and related compounds as anti-mitotic agents with activity in breast cancer was investigated. These compounds were designed as hybrids of the microtubule-targeting chalcones, indanones, and the aromatase inhibitor letrozole. : A panel of 29 compounds was synthesized and examined by a preliminary screening in estrogen receptor (ER) and progesterone receptor (PR)-positive MCF-7 breast cancer cells together with cell cycle analysis and tubulin polymerization inhibition.
View Article and Find Full Text PDFPharmaceuticals (Basel)
January 2025
Department of Nuclear Medicine, Beijing Tiantan Hospital, Capital Medical University, Beijing 100071, China.
Aromatase plays a crucial role in the conversion of androgens to oestrogens and is often overexpressed in hormone-dependent tumours, particularly breast cancer. [18F]BIBD-071, which has excellent binding affinity for aromatase and good pharmacokinetics, has potential for the diagnosis and treatment of aromatase-related diseases. The MCF-7 cell line, which is hormone receptor-positive (HR+), was used in the assessment of the novel [18F]-labelled radiotracer [18F]BIBD-071 via positron emission tomography (PET) imaging of an HR+ breast cancer xenograft model.
View Article and Find Full Text PDFCancers (Basel)
January 2025
UCIBIO-Applied Molecular Biosciences Unit, Laboratory of Biochemistry, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, Rua Jorge Viterbo Ferreira, n° 228, 4050-313 Porto, Portugal.
Endocrine therapies that comprise anti-estrogens and aromatase inhibitors (AIs) are the standard treatment for estrogen receptor-positive (ER+) (Luminal A) breast cancer-the most prevalent subtype. However, the emergence of resistance restricts their success by causing tumor relapse and re-growth, which demands a switch towards other therapeutic approaches in order to minimize or overcome resistance. Indeed, this clinical limitation highlights the search for new molecules to improve cancer treatment.
View Article and Find Full Text PDFBMC Pediatr
January 2025
Department of Endocrinology, Genetics and Metabolism, Fuzhou First General Hospital Affiliated with Fujian Medical University, Fuzhou Children's Hospital of Fujian Medical University, Fuzhou, 350005, China.
Objective: In boys during puberty who were undergoing recombinant human growth hormone (rhGH) treatment, we compared the therapeutic efficacy on growth, and any adverse reactions, of co-therapy with either letrozole or gonadotropin-releasing hormone analog (GnRHa).
Methods: Fifty-six pubertal growth hormone deficiency (GHD) boys were studied, they were treated with the combination of letrozole and rhGH (letrozole group, n = 28) or the combination of GnRHa and rhGH (GnRHa group, n = 28) for at least one year. Eighteen patients in the letrozole group and seventeen patients in the GnRHa group attained final adult height (FAH).
Cancer Treat Rev
January 2025
Department of Oncology, Faculty of Medicine and Health, Örebro University, Örebro, Sweden. Electronic address:
Importance: Endocrine treatments, such as Tamoxifen (TAM) and/or Aromatase inhibitors (AI), are the adjuvant therapy of choice for hormone-receptor positive breast cancer. These agents are associated with menopausal symptoms, adversely affecting drug compliance. Topical estrogen (TE) has been proposed for symptom management, given its' local application and presumed reduced bioavailability, however its oncological safety remains uncertain.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!