Mushroom Toxins: Chemistry and Toxicology.

J Agric Food Chem

Shaanxi Key Laboratory of Natural Products & Chemistry Biology, College of Chemistry & Pharmacy , Northwest A & F University, Yangling 712100 , People's Republic of China.

Published: May 2019

Mushroom consumption is a global tradition that is still gaining popularity. However, foraging for wild mushrooms and accidental ingestion of toxic mushrooms can result in serious illness and even death. The early diagnosis and treatment of mushroom poisoning are quite difficult, as the symptoms are similar to those caused by common diseases. Chemically, mushroom poisoning is related to very powerful toxins, suggesting that the isolation and identification of toxins have great research value, especially in determining the lethal components of toxic mushrooms. In contrast, most of these toxins have remarkable physiological properties that could promote advances in chemistry, biochemistry, physiology, and pharmacology. Although more than 100 toxins have been elucidated, there are a number of lethal mushrooms that have not been fully investigated. This review provides information on the chemistry (including chemical structures, total synthesis, and biosynthesis) and the toxicology of these toxins, hoping to inspire further research in this area.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.jafc.9b00414DOI Listing

Publication Analysis

Top Keywords

toxic mushrooms
8
mushroom poisoning
8
toxins
5
mushroom
4
mushroom toxins
4
toxins chemistry
4
chemistry toxicology
4
toxicology mushroom
4
mushroom consumption
4
consumption global
4

Similar Publications

Three new pyridine derivatives, irpelactedines A-C (1-3), and a new furan derivative, irpelactedine D (5), along with two structurally related known compounds, irpexidine A (4) and 5-carboxy-2-furanpropanoic acid (6), were isolated from the medicinal fungus Irpex lacteus SY1002. Their structures were elucidated through NMR and mass spectral analyses, combined with density functional theory calculations of ECD data. Evaluation of angiotensin-converting enzyme (ACE) inhibitory activity revealed that compounds 1 and 3 displayed moderate inhibition, with IC50 values of 31.

View Article and Find Full Text PDF

Polyphenolic Hispolon Derived from Medicinal Mushrooms of the and Genera Promotes Wound Healing in Hyperglycemia-Induced Impairments.

Nutrients

January 2025

Department of Pharmacy and Master Program, Collage of Pharmacy and Health Care, Tajen University, Yanpu Township 90741, Taiwan.

: This study investigated the wound-healing potential of hispolon, a polyphenolic pigment derived from medicinal mushrooms, under diabetic conditions using both in vitro and in vivo models. : In the in vitro assays, L929 fibroblast cells exposed to high glucose (33 mmol/L) were treated with hispolon at concentrations of 2.5, 5, 7.

View Article and Find Full Text PDF

Background/objectives: Mycotoxins, secondary metabolites synthesized by filamentous fungi, have been classified as dangerous substances and proven to be carcinogenic, as well as to have genotoxic, nephrotoxic, hepatotoxic, teratogenic, and mutagenic properties. Despite numerous trials to develop an effective and safe-for-human-health method of detoxification, there is still a high risk associated with the occurrence of these toxins in food and feed. Biological methods of food preservation are an alternative option to conventional chemical and physical methods, characterized by their less negative impact on human health as well as their high efficiency against filamentous fungi and other foodborne pathogens.

View Article and Find Full Text PDF

Pleurotus ostreatus is a nutrient-dense edible fungus renowned for its delicate texture, appealing flavor, and numerous potential health benefits. Simultaneous extraction within the framework of food resource processing facilitates the concurrent isolation and analysis of multiple target compounds. In this study, an ethanol/salt aqueous two-phase system (ATPS) was employed to extract polysaccharides (PS) and proteins from P.

View Article and Find Full Text PDF

In this study, a rapid and accurate analytical method was developed for the simultaneous determination of 26 plant toxins and 11 mushroom toxins in toxic plants, toxic mushrooms, and their cooked products using LC-MS/MS. This method enables highly selective detection of all 37 analytes, including those with high polarity and low molecular weight, within 10 min using Scherzo SS-C18 column. The analytes were extracted from the samples using methanol and trichloroacetic acid, and purified using Captiva EMR-Lipid.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!