In light of the fact that the design of new catalytic routes leading to functionalized silsesquioxanes is currently of high relevance; herein we report a novel, highly effective and convenient catalytic approach for the modification of silsesquioxanes. We present a dehydrogenative coupling reaction of completely as well as incompletely condensed POSS silanols with a wide range of commercially available hydrosilanes mediated by inexpensive copper(ii) trifluoromethanesulfonate. This research also includes mechanistic studies for this process.

Download full-text PDF

Source
http://dx.doi.org/10.1039/c9dt01135hDOI Listing

Publication Analysis

Top Keywords

functionalized silsesquioxanes
8
silsesquioxanes dehydrogenative
8
dehydrogenative coupling
8
poss silanols
8
copperii triflate-mediated
4
triflate-mediated synthesis
4
synthesis functionalized
4
coupling poss
4
silanols hydrosilanes
4
hydrosilanes light
4

Similar Publications

Silsesquioxane-crosslinked chitosan aerogels with highly selective adsorption for Au(III).

Int J Biol Macromol

January 2025

International Center for Interdisciplinary Research and Innovation of Silsesquioxane Science, Key Laboratory of Special Functional Aggregated Materials, Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, PR China. Electronic address:

Article Synopsis
  • A new water-soluble silsesquioxane precursor called DEA-GSQ was created by reacting diethanolamine with a glycidyloxypropyl silsesquioxane.
  • The resulting hybrid aerogels, formed by crosslinking DEA-GSQ with chitosan, were thoroughly characterized through various analytical techniques.
  • These hybrid aerogels exhibit a high capacity for adsorbing Au(III) ions, efficiently reducing them to Au(0), and have potential for practical applications in metal adsorption devices.
View Article and Find Full Text PDF

Engineering the Self-Assembly Pathways of POSS-Peptide Amphiphiles to Form Diverse Cross-β Structures.

Angew Chem Int Ed Engl

December 2024

South China Advanced Institute for Soft Matter Science and Technology, School of Emergent Soft Matter, South China University of Technology, Guangzhou, 510640, China.

Cross-β structures are crucial in driving protein folding and aggregation. However, due to their strong aggregating tendency, the precise control of the self-assembly of β-sheet-forming peptides remains a challenge. We propose a molecular geometry strategy to study and control the self-assembly of cross-β structures.

View Article and Find Full Text PDF

SiGe alloy nanocrystals (NCs) are a class of benign semiconductors that show size and composition-tunable energy gaps and promising optical properties because of the lattice disorder. The random distribution of elements within the alloys can lead to efficient light-matter interactions, making them attractive for Si-compatible optoelectronic devices, transistors, charge storage, and memory applications. However, the fabrication of discrete, quantum-confined alloys has proved a challenging task.

View Article and Find Full Text PDF

Structural Similarity-Induced Inter-Component Interaction in Silicone Polymer-Based Composite Sunscreen Film for Enhanced UV Protection.

Polymers (Basel)

November 2024

Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical & Material Engineering, Jiangnan University, Wuxi 214122, China.

Film-forming agents are key ingredients in achieving long-lasting and effective sun protection by sunscreens. However, studies on the synergistic effects of film-forming agents with different properties as well as the interaction between film-forming agents and powders are scarce, restricting the development of sunscreens with strong ultraviolet (UV)-shielding effects. Herein, we innovatively adopt polysiloxane-15 as the soft film, trimethylsiloxysilicate as the hard film, and vinyl dimethicone/methicone silsesquioxane crosspolymer as the functional powder to construct a co-assembled sunscreen film, and we investigate the property-enhancing effects of the sunscreen film as well as the interaction between the silicone polymer-based film-forming agents and functional powder therein.

View Article and Find Full Text PDF

The requirement for the development of advanced technologies is the need to create new functional thermostable soluble polysilsesquioxanes. Combining the potential of organosilicon chemistry and the chemistry of heterocyclic compounds is a promising direction for the formation of novel organosilicon polymer systems with new properties and new possibilities for their practical application. Using the classical method of hydrolysis and polycondensation of previously unknown trifunctional (trimethoxysilylpropyl)glutarimide in the presence or absence of an acid or base catalyst, a universal approach to the formation of new thermostable soluble polysilsesquioxanes with glutarimide side-chain groups is proposed, which forms the basis for the synthesis of polysilsesquioxane polymers with different functionality.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!