The aim of this review is to examine the moderating effect of the mode of exercise on the exercise-cognition relationship. Is one mode of exercise more efficient in enhancing cognition than the other? For example, is aerobic exercise preferable over balance training? Based on official guidelines for old age, exercise modes include aerobic activity, strength (resistance) training, flexibility, balance, and coordination. In relation to cognition, these exercise modes are further divided into two categories: physical training-aerobic and strength, and motor training-balance, coordination, and flexibility. The physical training activities are repetitive and automatic in nature, and require high metabolic energy and relatively low neuromuscular effort. The motor activities involve high neuromuscular demands and relatively low metabolic demands. In addition, there are specific movement skills that require more neuromuscular effort (e.g., Tai Chi), and sometimes also greater metabolic demands (e.g., tennis). Selected studies examining the effect of various modes of exercise on cognition contend that both training categories affect neuroplasticity, and consequently cognitive functioning. However, there are two main differences between them: (1) Physical training affects cognition via improvement in cardiovascular fitness, whereas motor training affects cognition directly; (2) Physical training affects neuroplasticity and cognition in a global manner, while motor training is task-specific in increasing brain neuroplasticity and in affecting cognition. Examining the underpinnings of these pathways reveals that there is a difference in the underlying forces behind the two training categories. In the physical training category, it is the of training that enhances neuroplasticity and consequently improves cognition, while in the motor activities it is the task that increases neuroplasticity, which improves cognition. Dual-task training, which includes cognitive demands in addition to physical or motor activity, has proven more effective in improving cognitive functioning than a single task. The implications are that if all training components traditionally recommended by official bodies-physical as well as motor training-are efficient in enhancing cognition, then we merely have to emphasize the inclusion of all exercise modes in our routine exercise regimen for physical as well as cognitive health in advanced age.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6450219PMC
http://dx.doi.org/10.3389/fmed.2019.00057DOI Listing

Publication Analysis

Top Keywords

physical training
16
mode exercise
12
exercise modes
12
training
12
cognition
11
exercise
9
exercise cognition
8
efficient enhancing
8
enhancing cognition
8
categories physical
8

Similar Publications

Studies on the Virucidal Effects of UV-C of 233 nm and 275 nm Wavelengths.

Viruses

December 2024

Institute of Hygiene and Environmental Medicine, University Medicine Greifswald, Ferdinand-Sauerbruch-Str., 17475 Greifswald, Germany.

Among the physical decontamination methods, treatment with ultraviolet (UV) radiation is a suitable means of preventing viral infections. Mercury vapor lamps (254 nm) used for room decontamination are potentially damaging to human skin (radiation) and harmful to the environment (mercury). Therefore, other UV-C wavelengths (100-280 nm) may be effective for virus inactivation on skin without damaging it, e.

View Article and Find Full Text PDF

Real-Time Freezing of Gait Prediction and Detection in Parkinson's Disease.

Sensors (Basel)

December 2024

School of Human Kinetics, Faculty of Health Sciences, University of Ottawa, Ottawa, ON K1N 6N5, Canada.

Freezing of gait (FOG) is a walking disturbance that can lead to postural instability, falling, and decreased mobility in people with Parkinson's disease. This research used machine learning to predict and detect FOG episodes from plantar-pressure data and compared the performance of decision tree ensemble classifiers when trained on three different datasets. Dataset 1 ( = 11) was collected in a previous study.

View Article and Find Full Text PDF

Foot strike patterns influence vertical loading rates during running. Running retraining interventions often include switching to a new foot strike pattern. Sudden changes in the foot strike pattern may be uncomfortable and may lead to higher step-to-step variability.

View Article and Find Full Text PDF

Point cloud registration is pivotal across various applications, yet traditional methods rely on unordered point clouds, leading to significant challenges in terms of computational complexity and feature richness. These methods often use k-nearest neighbors (KNN) or neighborhood ball queries to access local neighborhood information, which is not only computationally intensive but also confines the analysis within the object's boundary, making it difficult to determine if points are precisely on the boundary using local features alone. This indicates a lack of sufficient local feature richness.

View Article and Find Full Text PDF

One of the most promising applications for electroencephalogram (EEG)-based brain-computer interfaces (BCIs) is motor rehabilitation through motor imagery (MI) tasks. However, current MI training requires physical attendance, while remote MI training can be applied anywhere, facilitating flexible rehabilitation. Providing remote MI training raises challenges to ensuring an accurate recognition of MI tasks by healthcare providers, in addition to managing computation and communication costs.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!