The presence of antibiotic resistance and other marker genes in genetically modified plants causes concern in society because of perceived risks for the environment and human health. The creation of transgenic plants that do not contain foreign genetic material, especially that of bacterial and viral origin, largely alleviates the tension and makes the plants potentially more attractive for consumers. To produce marker-free transgenic apple plants, we used the pMF1 vector, which combines recombinaseR and a bifunctional selectable gene. The thaumatin II gene from the tropical plant , which is under the control of the plant E8 gene (a predominantly fruit-specific promoter) and rbsS3A terminator, was taken as the gene of interest for modification of the fruit taste and enhancing its sweetness. Exploitation of this gene in our laboratory has allowed enhancing the sweetness, as well as improving the taste characteristics, of fruits and vegetables of plants such as strawberry, carrot, tomato and pear. We have obtained three independent transgenic apple lines that have been analyzed by PCR and Southern blot analyses for the presence of T-DNA sequences. Two of them contained a partial sequence of the T-DNA. With one line containing the full insert we then used a delayed strategy for the selection of marker-free plants. After induction of recombinase activity in leaf explants on selective media with 5-fluorocytosine (5-FC) we obtained more than 30 sublines, most of which lost their resistance to kanamycin. Most of the apple sublines showed the expression of the supersweet protein gene in a wide range of levels as detected by RNA accumulation. The plants from the group with the highest transcript level were propagated and grafted onto dwarf rootstocks for early fruit production for future estimates of protein levels and organoleptic analyses. Thus, we developed a protocol that allowed the production of marker-free apple plants expressing the supersweet protein.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6449483 | PMC |
http://dx.doi.org/10.3389/fpls.2019.00388 | DOI Listing |
Plant Physiol Biochem
January 2025
Shandong Institute of Pomology, Shandong Academy of Agricultural Sciences, Taian, 271000, China. Electronic address:
Frost damage to apple flowers significantly affects both the quality and yield of apples, potentially leading to substantial economic losses. This study investigates the application of the environmentally friendly plant hormone 24-epibrassinolide (EBR) on apple flowers to assess its effects under frost stress conditions. The findings indicate that exogenous EBR treatment maintained favorable flower morphology, mitigated pistil browning, and reduced ion leakage.
View Article and Find Full Text PDFPlants (Basel)
January 2025
College of Horticulture, Gansu Agricultural University, Lanzhou 730070, China.
Soil salinization severely restricts the growth and development of crops globally, especially in the northwest Loess Plateau, where apples constitute a pillar industry. Nanomaterials, leveraging their unique properties, can facilitate the transport of nutrients to crops, thereby enhancing plant growth and development under stress conditions. To investigate the effects of nano zinc oxide (ZnO NP) on the growth and physiological characteristics of apple self-rooted rootstock M9-T337 seedlings under saline alkali stress, one-year-old M9-T337 seedlings were used as experimental materials and ZnO NPs were used as donors for pot experiment.
View Article and Find Full Text PDFPlants (Basel)
January 2025
Intelligent Equipment Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China.
Precision pesticide application mainly relies on canopy volume, resulting in varied application effectiveness across different density areas of orchard trees. This study examined pesticide application effectiveness based on the spray wind, canopy volume, and leaf area within the canopy, providing variable bases for precise regulation of spray wind and pesticide dosage. The study addresses the knowledge gap by utilizing laser detection and ranging (LiDAR) to measure the thickness and leaf area of orchard tree canopies.
View Article and Find Full Text PDFPlants (Basel)
January 2025
Department of Agriculture, Forestry and Food Science, University of Torino, Largo Braccini 2, 10095 Grugliasco, Italy.
Freeze-drying fresh vegetables and fruits may not only prevent post-harvest losses but also provide a concentrated source of nutrients and phytochemicals. This study focused on the phenolic composition of different freeze-dried products derived from horticultural crop remains (HCRs) in the vegetable and fruit production chain. These products may be considered as a potential health-promoting solution for preventing post-harvest fruit spoiling and losses.
View Article and Find Full Text PDFNutrients
January 2025
Department of Dermatology, Weill Cornell Medicine, New York City, NY 10021, USA.
Vitiligo is a chronic autoimmune pigmentation disorder shaped by a complex interplay of genetic predispositions and environmental triggers. While conventional therapies-phototherapy, corticosteroids, and immunosuppressants-can be effective, their benefits are often partial and temporary, with recurrence common once treatment stops. As such, there is increasing interest in exploring complementary approaches that may offer a more sustainable impact.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!