A Protein-Linger Strategy Keeps the Plant On-Hold After Rehydration of Drought-Stressed .

Front Plant Sci

Division of Molecular Systems Biology, Department of Ecogenomics and Systems Biology, University of Vienna, Vienna, Austria.

Published: March 2019

Most crop plants are exposed to intermittent drought periods. To cope with these continuous changes, plants need strategies to prevent themselves from exhaustive adjustment maneuvers. Drought stress recovery has been shown to be an active process, possibly involved in a drought memory effect allowing plants to better cope with recurrent aridity. An integrated understanding of the molecular processes of enhanced drought tolerance is required to tailor key networks for improved crop protection. During summer, prolonged periods of drought are the major reason for economic yield losses of sugar beet () in Europe. A drought stress and recovery time course experiment was carried out under controlled environmental conditions. In order to find regulatory key mechanisms enabling plants to rapidly react to periodic stress events, beets were either subjected to 11 days of progressive drought, or were drought stressed for 9 days followed by gradual rewatering for 14 days. Based on physiological measurements of leaf water relations and changes in different stress indicators, plants experienced a switch from moderate to severe water stress between day 9 and 11 of drought. The leaf proteome was analyzed, revealing induced protein pre-adjustment (prior to severe stress) and putative stress endurance processes. Three key protein targets, regulatory relevant during drought stress and with lingering levels of abundance upon rewatering were further exploited through their transcript performance. These three targets consist of a jasmonate induced, a salt-stress enhanced and a phosphatidylethanolamine-binding protein. The data demonstrate delayed protein responses to stress compared to their transcripts and indicate that the lingering mechanism is post-transcriptionally regulated. A set of lingering proteins is discussed with respect to a possible involvement in drought stress acclimation and memory effects.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6449722PMC
http://dx.doi.org/10.3389/fpls.2019.00381DOI Listing

Publication Analysis

Top Keywords

drought stress
16
drought
11
stress
10
stress recovery
8
plants
5
protein-linger strategy
4
strategy plant
4
plant on-hold
4
on-hold rehydration
4
rehydration drought-stressed
4

Similar Publications

Eremopyrum triticeum is a typical spring ephemeral species, which in China mainly distributed in the desert regions of northern Xinjiang, and play an important role in the desert ecosystems. E. triticeum has several adaptive characteristics such as short growth rhythms, high photosynthetic efficiency, high seed production, drought and salt resistance.

View Article and Find Full Text PDF

Protein phosphatases (PPs) are a class of enzymes that play a critical role in cellular regulation by catalyzing the removal of phosphate groups from proteins. This dephosphorylation process is essential for controlling and modulating various cellular functions, including signal transduction, cell cycle progression, metabolic regulation, and stress responses. This study focuses on the comprehensive genomic identification, evolutionary analysis, and transcript profiling of the PP2C gene family within Solanum lycopersicum, an economically significant crop with substantial agricultural and nutritional importance.

View Article and Find Full Text PDF

Genome-wide identification of high-affinity nitrate transporter 2 (NRT2) gene family under phytohormones and abiotic stresses in alfalfa (Medicago sativa).

Sci Rep

December 2024

Pratacultural College, Key Laboratory of Grassland Ecosystem (Ministry of Education), Key Laboratory of Forage Gerplasm Innovation and New Variety Breeding of Ministry of Agriculture and Rural Affairs (Co-sponsored by Ministry and Province), Gansu Agricultural University, Lanzhou, 730070, Gansu, China.

The high-affinity nitrate transporter 2 (NRT2) protein plays an important role in nitrate uptake and transport in plants. In this study, the NRT2s gene family were systematically analyzed in alfalfa. We identified three MsNRT2 genes from the genomic database.

View Article and Find Full Text PDF

Intrinsically Disordered Proteins (IDPs) and Intrinsically Disordered Regions (IDRs) are renowned for their dynamic structural characteristics and conformational adaptability, allowing them to assume diverse conformations in response to prevailing environmental conditions. This inherent flexibility facilitates their interactions with molecular targets, enabling them to engage in numerous cellular processes without any excessive energy consumption. This adaptability is instrumental in shaping cellular complexity and enhancing adaptability.

View Article and Find Full Text PDF

Soybean mitogen-activated protein kinase GmMPK6 enhances drought tolerance.

Biochem Biophys Res Commun

December 2024

Interdisciplinary Graduate Program in Advanced Convergence Technology and Science, Jeju National University, 102 Jejudaehak-ro, Jeju, 63243, Republic of Korea. Electronic address:

Soybeans are a critical crop that provides both protein and oil. In response to environmental stresses, mitogen-activated protein kinases (MPKs) play a key role in transmitting stress signals to the nucleus to initiate stress-responsive actions. Drought stress reduces plant development and productivity but the specific MPK responsible for drought stress responses has not been previously identified.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!