Bacterial leaf spot (BLS) caused by pv. () places a major constraint on lettuce production worldwide. The most sustainable strategy known to date for controlling BLS is the use of resistant cultivars. The nutrient elemental signature (ionome) of ten lettuce cultivars with three levels of resistance was analyzed by inductively coupled plasma optical emission spectroscopy (ICP-OES) to determine which nutrient balances are linked to resistance to BLS, and to assess the effect of infection on the ionome. The elemental concentrations were preprocessed with isometric log-ratios to define nutrient balances. Using this approach, 4 out of 11 univariate nutrient balances were found to significantly influence the resistance of lettuce cultivars to BLS ( < 0.05). These significant balances were the overall nutritional status balancing all measured nutrients with their complementary in the dry mass, as well as balances [Mn | Zn,Cu], [Zn | Cu], and [S,N | P]. Moreover, the infection of lettuce cultivars mostly affected the lettuce ionome on the [N,S | P] balance, where infection tended to lean the balance toward the N,S part relatively to P. This study shows that nutrient uptake in lettuce can be affected by BLS infection and that nutrient status influences resistance to BLS infection.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6448033 | PMC |
http://dx.doi.org/10.3389/fpls.2019.00351 | DOI Listing |
Biology (Basel)
December 2024
School of Intelligent Manufacturing and Equipment, Shenzhen Institute of Information Technology, Shenzhen 518172, China.
In an environmentally controlled plant factory with LED red-blue light, the effects of conventional light (4R:1B, 200 μmol·m·s, 18/6 h) and continuous light (CL, 24/0 h) with three light intensities (4R:1B, 200, 300 and 400 μmol·m·s, 24/0 h) on yield, nutritional quality, reactive oxygen species (ROS) content and 1,1-diphenyl-2-picrylhydrazyl radical scavenging activity (DPPH) in green-leaf Yidali and purple-leaf Zishan lettuces were investigated. The results showed that the dry and fresh shoot weight of two lettuces exposed to CL tended to increase with light intensity-from 200 to 400 μmol·m·s-compared to conventional light, while the leaf area tended to decrease or remained unchanged. High-intensity CL could significantly increase soluble sugar and reduce the nitrate contents of the two lettuces.
View Article and Find Full Text PDFInt J Food Microbiol
February 2025
Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA; Department of Family and Consumer Sciences, North Carolina A&T State University, Greensboro, NC 27401, USA. Electronic address:
This work examined the attachment of porcine rotavirus (PRV) and Tulane virus (TV), a surrogate for human norovirus, to fresh and artificial phylloplanes of Romaine lettuce and Carmel spinach. The effect of produce type, sanitizer, and ultrasound treatment on removal of PRV and TV from produce and artificial surfaces was also investigated. Sanitization was performed with two oxidant-based sanitizers (chlorine and peroxyacetic acid) and one surfactant-based sanitizer (0.
View Article and Find Full Text PDFPlants (Basel)
December 2024
Biology Department, Tor Vergata University of Rome, Via della Ricerca Scientifica 1, 00133 Rome, Italy.
Aquaponics is an innovative agricultural method combining aquaculture and hydroponics. However, this balance can lead to the gradual depletion of essential micronutrients, particularly iron. Over time, decreasing iron levels can negatively impact plant health and productivity, making the monitoring and management of iron in aquaponic systems vital.
View Article and Find Full Text PDFHeliyon
October 2024
Department of Agricultural and Environmental Science, University of Milan, Via Celoria 2, 20133, Milan, Italy.
Plant Dis
December 2024
Guangxi University, College of Agriculture, 100 Daxue East Road, Nanning, Guangxi, China, 530004;
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!