The entomopathogenic fungus can adopt an endophytic lifestyle by colonising a wide array of plant species. -colonised plants can show enhanced resistance against insects and plant pathogens alike. However, little is known about the molecular and physiological mechanisms that govern such interactions. Here, we assessed the effects of two strains (BG11, FRh2) on the growth of and its resistance against two herbivore species and a phytopathogen. Plant responses were studied on the transcriptomic and metabolic level using microarrays and by measuring changes in defence-related phytohormones and glucosinolates (GLSs). Root inoculation with BG11 significantly increased plant growth, while FRh2 had no such effect. Both strains decreased leaf lesion area caused by the phytopathogen but did not affect population growth of the aphid or the growth of caterpillars. Microarray analyses of leaves from endophyte-inoculated provided evidence for transcriptional reprogramming of plant defence pathways, with strain-specific changes in the expression of genes related to pathogenesis, phytoalexin, jasmonic (JA), and salicylic acid (SA) signalling pathways. However, colonisation did not result in higher concentrations of JA and SA or major changes in leaf GLS profiles. We conclude that the endophyte induces plant defence responses and hypothesise that these contribute to enhanced resistance against .

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6449843PMC
http://dx.doi.org/10.3389/fmicb.2019.00615DOI Listing

Publication Analysis

Top Keywords

transcriptional reprogramming
8
defence pathways
8
enhanced resistance
8
plant defence
8
plant
6
reprogramming defence
4
pathways entomopathogen
4
entomopathogen correlates
4
resistance
4
correlates resistance
4

Similar Publications

RNA N6-methyladenosine (m6A) plays diverse roles in RNA metabolism and its deregulation contributes to tumor initiation and progression. Clear cell renal cell carcinoma (ccRCC) is characterized by near ubiquitous loss of followed by mutations in epigenetic regulators , , and . Mutations in , a histone H3 lysine 36 trimethylase (H3K36me3), are associated with reduced survival, greater metastatic propensity, and metabolic reprogramming.

View Article and Find Full Text PDF

Upon infection, human papillomavirus (HPV) manipulates host cell gene expression to create an environment that is supportive of a productive and persistent infection. The virus-induced changes to the host cell's transcriptome are thought to contribute to carcinogenesis. Here, we show by RNA-sequencing that oncogenic HPV18 episome replication in primary human foreskin keratinocytes (HFKs) drives host transcriptional changes that are consistent between multiple HFK donors.

View Article and Find Full Text PDF

Background: Bladder cancer (BCa) is one of the most common malignancies worldwide, and its prognostication and treatment remains challenging. The fast growth of various cancer cells requires reprogramming of its energy metabolism using aerobic glycolysis as a major energy source. However, the prognostic and therapeutic value of glycolysis-related genes in BCa remains to be determined.

View Article and Find Full Text PDF

Genetic variation in IL-4 activated tissue resident macrophages determines strain-specific synergistic responses to LPS epigenetically.

Nat Commun

January 2025

Type 2 Immunity Section, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD, USA.

How macrophages in the tissue environment integrate multiple stimuli depends on the genetic background of the host, but this is still poorly understood. We investigate IL-4 activation of male C57BL/6 and BALB/c strain specific in vivo tissue-resident macrophages (TRMs) from the peritoneal cavity. C57BL/6 TRMs are more transcriptionally responsive to IL-4 stimulation, with induced genes associated with more super enhancers, induced enhancers, and topologically associating domains (TAD) boundaries.

View Article and Find Full Text PDF

Fish are ectothermic animals with temperature playing a key role in their health, growth and survival. Greater occurrence of heat waves and temperature extremes, as a result of global climate change, has the potential to impact both wild and farmed populations. Within aquaculture, production is threatened by a multitude of stressors, including adverse temperatures.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!