Pediatric spinal deformity surgeries are challenging operations that require considerable expertise and resources. The unique anatomy and rarity of these cases present challenges in surgical training and preparation. We present a case series illustrating how 3-dimensional (3-D) printed models were used in preoperative planning for 3 cases of pediatric spinal deformity surgery. Patient 1 was a 6-year-old male with scoliosis secondary to an L3 hemivertebra and severe congenital heart disease who underwent excision of the L3 hemivertebra and L2-L4 spinal fusion. Patient 2 was an 11-year-old male with an L2 hemivertebra and lumbar kyphosis who underwent excision of the L2 hemivertebra and T12-L4 spinal fusion. Patient 3 was a 6-year-old female with Down syndrome who presented with atlantoaxial instability and acute lymphoblastic leukemia. She underwent occipital-cervical spinal fusion and decompression. Prior to surgery, 3-D printed models of the patients' spines were created based on computed tomography (CT) imaging. The anatomic complexity and risk of devastating neurologic consequences in spine surgery call for careful preparations. 3-D models enable more efficient and precise surgical planning compared to the use of 2-dimensional CT/magnetic resonance images. The 3-D models also make it easier to visualize patient anatomy, allowing patients and their families who lack medical training to interpret and understand cross-sectional anatomy, which in our experience, enhanced the consultations.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6447199 | PMC |
http://dx.doi.org/10.31486/toj.18.0117 | DOI Listing |
Acta Orthop
January 2025
Helsinki New Children's Hospital, Helsinki University Hospital, Helsinki, Finland.
Spondylolysis is defined as a defect or elongation in the pars interarticularis of the lumbar spine, either unilateral or bilateral. Growing children with bilateral spondylolysis may develop spondylolisthesis, i.e.
View Article and Find Full Text PDFNeurology
January 2025
The Dubowitz Neuromuscular Centre, Developmental Neurosciences Department, University College London, Great Ormond Street Institute of Child Health, United Kingdom.
Background And Objectives: Safety and efficacy of IV onasemnogene abeparvovec has been demonstrated for patients with spinal muscular atrophy (SMA) weighing <8.5 kg. SMART was the first clinical trial to evaluate onasemnogene abeparvovec for participants weighing 8.
View Article and Find Full Text PDFPhys Imaging Radiat Oncol
October 2024
Aarhus University Hospital, Danish Centre for Particle Therapy, Aarhus N, Denmark.
Background And Purpose: Radiotherapy for paediatric posterior fossa tumours may cause complications in the brainstem and upper spinal cord due to high doses. With proton therapy (PT) this risk may increase due to higher relative biological effectiveness (RBE) from elevated linear energy transfer (LET). This study assesses variations in LET in the brainstem and spinal cord in proton treatment plans from European centres.
View Article and Find Full Text PDFSpine Deform
January 2025
Department of Orthopaedic Surgery, Scottish Rite Hospital for Children, Dallas, TX, USA.
Purpose: The etiology of early-onset scoliosis (EOS) has been shown to significantly influence baseline parent-reported health-related quality of life (HrQOL). In combining these etiology groups, we obligatorily lump together many disparate diagnoses, particularly true in the neuromuscular (NM) cohort. We sought to evaluate the influence of underlying neuromuscular diagnosis on the HrQOL at 5 years following surgery for EOS.
View Article and Find Full Text PDFAquat Toxicol
January 2025
Henan Engineering Research Center of Zebrafish Models for Human Disease and Drug Screening, Henan Neurodevelopment Engineering Research Center for Children, Children's Hospital Affiliated to Zhengzhou University, Zhengzhou 450018, China; Department of Nephrology and Rheumatology, Children's Hospital Affiliated to Zhengzhou University, Zhengzhou 450018, China. Electronic address:
Dimethyl phthalate (DMP) has been extensively utilized as a plasticizer on a global scale for many years. Its presence in the environment and its harmful effects on living organisms have raised concerns. This study aimed to examine its potential developmental neurotoxicity by utilizing zebrafish as a model.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!