Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6459399 | PMC |
http://dx.doi.org/10.1088/1361-6668/aaa1b3 | DOI Listing |
Med Phys
January 2025
Department of Radiology, Mayo Clinic, Rochester, Minnesota, USA.
Background: The spatial resolution of new, photon counting detector (PCD) CT scanners is limited by the size of the focal spot. Smaller, brighter focal spots would melt the tungsten focal track of a conventional X-ray source.
Purpose: To propose focal spot multiplexing (FSM), an architecture to improve the power of small focal spots and thereby enable higher resolution clinical PCD CT.
Phys Med Biol
January 2025
Institute of Biomedical Engineering, Shenzhen Bay Laboratory, Guangqiao Load, Shenzhen, 518132, CHINA.
To develop and validate a novel multidimensional readout method that significantly reduces the number of readout channels in PET detectors while maintaining high spatial and energy performance. Approach: We arranged a 3×3×4 SiPM array in multiple dimensions and employed row/column/layer summation with a resistor-based splitting circuit. We then applied denoising methods to enhance the peak-to-valley ratio in the decoding map, ensuring accurate crystal-position determination.
View Article and Find Full Text PDFAppl Environ Microbiol
January 2025
McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, Texas, USA.
Electroactive organisms contribute to metal cycling, pollutant removal, and other redox-driven environmental processes via extracellular electron transfer (EET). Unfortunately, developing genotype-phenotype relationships for electroactive organisms is challenging because EET is necessarily removed from the cell of origin. Microdroplet emulsions, which encapsulate individual cells in aqueous droplets, have been used to study a variety of extracellular phenotypes but have not been applied to investigate EET.
View Article and Find Full Text PDFNanomicro Lett
January 2025
RFIC Bio Centre, Kwangwoon University, Seoul, 01897, South Korea.
Recent advancements in passive wireless sensor technology have significantly extended the application scope of sensing, particularly in challenging environments for monitoring industry and healthcare applications. These systems are equipped with battery-free operation, wireless connectivity, and are designed to be both miniaturized and lightweight. Such features enable the safe, real-time monitoring of industrial environments and support high-precision physiological measurements in confined internal body spaces and on wearable epidermal devices.
View Article and Find Full Text PDFNat Commun
January 2025
TUM School of Natural Sciences, Department of Physics and Munich Center for Quantum Science and Technology (MCQST), Technical University of Munich, James-Franck-Str. 1, Garching, Germany.
Small registers of spin qubits in silicon can exhibit hour-long coherence times and exceeded error-correction thresholds. However, their connection to larger quantum processors is an outstanding challenge. To this end, spin qubits with optical interfaces offer key advantages: they can minimize the heat load and give access to modular quantum computing architectures that eliminate cross-talk and offer a large connectivity.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!