Emulsion Interfacial Synthesis of Polymer/Inorganic Janus Particles.

Langmuir

State Key Laboratory of Polymer Physics and Chemistry, Institute of Chemistry, Chinese Academy of Sciences , Beiing 100190 , China.

Published: May 2019

We report a method to prepare polymer/inorganic Janus particles by transferring self-assembled membranes of copolymers such as PS- b-PAA at an emulsion interface when the amine-capped particles such as paramagnetic FeO@SiO core/shell particles are preferentially adsorbed by specific interactions. While the particles are protected, the exposed side can be further modified to conjugate aldehyde-capped polyethylene oxide (PEO). Both connections become robust by covalent bonds. The hydrophilic PEO and hydrophobic PS chains are distinctly compartmentalized onto the opposite sides of the FeO@SiO particles. As a magnetic responsive solid surfactant, the stabilized emulsions can be driven with a magnet for directional movement and coalescence with increasing magnetic strength. This method can be extended to other Janus particles with tunable organic materials and solid particles.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.langmuir.9b00211DOI Listing

Publication Analysis

Top Keywords

janus particles
12
polymer/inorganic janus
8
particles
8
emulsion interfacial
4
interfacial synthesis
4
synthesis polymer/inorganic
4
particles report
4
report method
4
method prepare
4
prepare polymer/inorganic
4

Similar Publications

Theranostic agents hold great promise for personalized medicine by combining diagnostic and therapeutic functions. Herein, two novel multifunctional theranostic glyconanoprobes targeting breast cancer were engineered for synergistic dual chemo-gene therapy and triple chemo-gene-photothermal therapy. Upconversion nanoparticles (UCNPs) were prepared and coated with a Dox-loaded glycopeptide polymer (P-Dox) to form UCNP@P-Dox for improving stability.

View Article and Find Full Text PDF

Hypoxia, a phenomenon that occurs when the oxygen level in tissues is lower than average, is commonly observed in human solid tumors. For oncological treatment, the hypoxic environment often results in radioresistance and chemoresistance. In this study, a new multifunctional oxygen carrier, carboxymethyl hexanoyl chitosan (CHC) nanodroplets decorated with perfluorohexane (PFH) and superparamagnetic iron oxide (SPIO) nanodroplets (SPIO@PFH-CHC), was developed and investigated.

View Article and Find Full Text PDF

A simply synthesized, silver ions-doped porous gold microparticles-based SERS aptamer sensor for ultrasensitive and broad-range quantitative detection of IL-6.

Anal Chim Acta

January 2025

Key Laboratory of Biomaterials of Guangdong Higher Education Institutes, Department of Biomedical Engineering, Jinan University, Guangzhou, 510632, China. Electronic address:

Background: The multifunctional cytokine interleukin-6 (IL-6) plays a pivotal role in chronic and acute inflammatory responses, underscoring the importance of accurately determining IL-6 levels for early diagnosis, prevention, and treatment of inflammation.

Results: This study developed a versatile and innovative single-particle surface-enhanced Raman spectroscopy (SERS) sensing platform for the precise and sensitive quantification of IL-6 in complex samples using a novel one-pot synthesized, silver ions-doped three-dimensional porous gold microparticles (PGMs) with abundant hot spots for robust SERS enhancement. By rationally designing rich cytosine-Ag-cytosine base pairs between IL-6 aptamers and complementary chains on the PGMs, we harnessed the SERS-enhancing effect to achieve highly sensitive and specific IL-6 quantification within a wide range of 10 to 10 mg/mL and a limit of detection (LOD) of 0.

View Article and Find Full Text PDF

Background: Adrenaline and glucose are essential biomarkers in human body for maintaining metabolic balance. Abnormal levels of adrenaline and glucose are associated with various diseases. Therefore, it is important to design portable, on-site devices for rapid adrenaline and glucose analysis to safeguard health.

View Article and Find Full Text PDF

Multifunctional layer-by-layer smart film with betalains and selenium nanoparticles for intelligent meat freshness monitoring and preservation.

Food Chem

January 2025

Laboratory of Agricultural and Food Biophysics, Institute of Biophysics, College of Science, Northwest A&F University, Yangling, Shaanxi 712100, China; Laboratory of Muscle Biology and Meat Science, National Beef Cattle Improvement Center, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China; Laboratory of Meat Quality Analysis and Products Development, Ningxia Xihaigu Institute of High-end Cattle Industry, Haiyuan, Ningxia 755299, China. Electronic address:

Multifunctional pH-responsive films were fabricated via layer-by-layer deposition of gelatin, chitosan, and carboxymethyl cellulose (CMC), incorporating selenium nanoparticles (SeNPs) and beetroot extract (BTE), to monitor and preserve beef freshness. SeNPs were synthesized and characterized via various techniques. BTE exhibited promising functional properties, and films demonstrated a significant color transition from red to yellow across pH 2-14.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!