The main product obtained by electrochemical reduction of CO depends on the electrode material, and in many cases the Faradaic efficiency for this is determined by the electrolyte. Only a few investigations in which attempts to produce different products from the same electrode material have been done so far. In this work, we focus on boron-doped diamond (BDD) electrodes with which plentiful amounts of formic acid and small amounts of carbon monoxide have been produced. By optimizing certain parameters and conditions used in the electrochemical process with BDD electrodes, such as the electrolyte, the boron concentration of the BDD electrode, and the applied potential, we were able to control the selectivity and efficiency with which carbon monoxide is produced. On one hand, with a BDD electrode with 1% boron used for the cathode and KClO for the catholyte, the selectivity for producing carbon monoxide was high. On the other hand, with a BDD electrode with 0.1% boron used for the cathode and KCl for the catholyte, the production of formic acid was the most evident. In situ attenuated total reflectance-infrared (ATR-IR) measurements during electrolysis showed that CO intermediates were adsorbed on the BDD surface in the KClO aqueous solution. Here, switchable product selectivity was achieved when reducing CO using BDD electrodes.

Download full-text PDF

Source
http://dx.doi.org/10.1021/jacs.9b01773DOI Listing

Publication Analysis

Top Keywords

bdd electrodes
12
carbon monoxide
12
bdd electrode
12
switchable product
8
product selectivity
8
electrochemical reduction
8
boron-doped diamond
8
electrode material
8
formic acid
8
monoxide produced
8

Similar Publications

Seawater electrolysis is an ideal technology for obtaining clean energy-green hydrogen. Developing efficient bifunctional catalysts is crucial for hydrogen production through direct seawater electrolysis. Currently, metal substrates loaded with active catalysts are widely employed as electrodes for seawater electrolysis.

View Article and Find Full Text PDF

Pulsed-Current Operation Enhances HO Production on a Boron-Doped Diamond Mesh Anode in a Zero-Gap PEM Electrolyzer.

ChemSusChem

January 2025

Department of Chemical Engineering, MESA+ Institute for Nanotechnology, Faculty of Science and Technology, University of Twente, Drienerlolaan 5, 7522 NB, Enschede, The, Netherlands.

A niobium (Nb) mesh electrode was coated with boron-doped diamond (BDD) using chemical vapor deposition in a custom-built hot-filament reactor. The BDD-functionalized mesh was tested in a zero-gap electrolysis configuration and evaluated for the anodic formation of HO by selective oxidation of water, including the analysis of the effects on Faradaic efficiency towards HO (FEH2O2) induced by pulsed electrolysis. A low electrolyte flow rate (V⋅) was found to result in a relatively high concentration of HO in single-pass electrolysis experiments.

View Article and Find Full Text PDF

Electrochemical recovery of zero-valent sulfur (S) from thiourea (TU) wastewater offers a promising waste-to-value strategy that expects to promote the sulfur resource cycle in water treatment but still suffer from electrode poisoning and sulfur over-oxidation. Herein, we designed a metal-free CNT electrochemical membrane for selective oxidation of thiourea and recovery of S. We found that defect sites on the carbon nanotube surface enable direct electron transfer for thiourea oxidation and may form carbon-sulfur bridge bonds, thereby facilitating the generation of S and urea.

View Article and Find Full Text PDF

Understanding how to tune the properties of electroactive materials is a key parameter for their applications in energy storage systems. This work presents a comprehensive study in tailoring polyaniline (PANI) suspensions by acid-assisted polymerization method and their subsequent deposition on boron-doped diamond (BDD) supports with low/high B concentrations. The porous or densely packed morphology of PANI is successfully controlled by varying the monomer-to-initiator ratio.

View Article and Find Full Text PDF

Various electrochemical tests were carried out to elucidate the electrolytic oxidation mechanism of oxalic acid on a boron-doped diamond electrode in a nitric acid environment. These included cyclic voltammetry, AC impedance, constant current electrolysis, and electron paramagnetic resonance spectroscopy. The impact of electrode potential, current density, nitric acid concentration, and electrode plate spacing on the oxidation of oxalic acid was investigated.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!