Two-dimensional (2D) van der Waals (vdW) materials provide the possibility of realizing heterostructures with coveted properties. Here, we report a theoretical investigation of the vdW magnetic tunnel junction (MTJ) based on VSe/MoS heterojunction, where the VSe monolayer acts as a ferromagnet with room-temperature ferromagnetism. We propose the concept of spin-orbit torque (SOT) vdW MTJ with reliable reading and efficient writing operations. The nonequilibrium study reveals a large tunneling magnetoresistance of 846% at 300 K, identifying significantly its parallel and antiparallel states. Thanks to the strong spin Hall conductivity of MoS, SOT is promising for the magnetization switching of VSe free layer. Quantum-well states come into being and resonances appear in MTJ, suggesting that the voltage control can adjust transport properties effectively. The SOT vdW MTJ based on VSe/MoS provides desirable performance and experimental feasibility, offering new opportunities for 2D spintronics.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acsami.9b02493 | DOI Listing |
Sensors (Basel)
January 2025
School of Cyber Science and Engineering, Liaoning University, Shenyang 110036, China.
Recently, there has been a growing interest in underground construction safety, during activities such as subway construction, underground mining, and tunnel excavation. While Internet of Things (IoT) sensors help to monitor these conditions, large-scale deployment is limited by high power needs and complex tunnel layouts, making real-time response a critical challenge. A delay-sensitive multi-sensor multi-base-station routing scheduling method is proposed for the IoT in underground mining.
View Article and Find Full Text PDFMaterials (Basel)
January 2025
Shandong Key Laboratory of Optical Communication Science and Technology, School of Physics Science and Information Technology, Liaocheng University, Liaocheng 252000, China.
The n-TiO nanoballs-sticks (TiO NBSs) were successfully deposited on p-lightly boron-doped diamond (LBDD) substrates by the hydrothermal method. The temperature-dependent optoelectronic properties and carrier transport behavior of the n-TiO NBS/p-LBDD heterojunction were investigated. The photoluminescence (PL) of the heterojunction detected four distinct emission peaks at 402 nm, 410 nm, 429 nm, and 456 nm that have the potential to be applied in white-green light-emitting devices.
View Article and Find Full Text PDFSci Rep
January 2025
Aix Marseille Univ, Université de Toulon, CNRS, CPT, Marseille, France.
The thermoelectric properties of hybrid systems based on a single-level quantum dot coupled to a normal-metal/half-metallic lead and attached to a topological superconductor wire are investigated. The topological superconductor wire is modeled by a spinless p-wave superconductor which hosts both a Majorana bound state at its extremity and above gap quasiparticle excitations. The main interest of our investigation is to study the interplay of sub-gap and single-particle tunneling processes and their contributions to the thermoelectric response of the considered system.
View Article and Find Full Text PDFNano Lett
January 2025
Key Lab for the Physics and Chemistry of Nanodevices and Center for Carbon-based Electronics, School of Electronics, Peking University, Beijing 100871, China.
One-time programmable (OTP) memory is an essential component in chips, which has extremely high security to protect the stored critical information from being altered. However, traditional OTP memory based on the thermal breakdown of the dielectric has a large programming current, which leads to high power consumption. Here, we report a gate tunneling-induced "cold" breakdown phenomenon in carbon nanotube (CNT) field-effect transistors, and based on this we construct a "cold" fuse (C-fuse) memory where applying a mild gate voltage can break down the CNT channel without damaging the gate dielectric.
View Article and Find Full Text PDFSci Rep
January 2025
Inner Mongolia Research Institute, China University of Mining and Technology (Beijing), Ordos, 017000, China.
Based on a prototype of the Beijing subway tunnel, this research conducts large-scale model experiments to systematically investigate the vibration response patterns of tunnels with different damage levels under the influence of measured train loads. Initially, the polynomial fitting modal identification method (Levy) and the model test preparation process are introduced. Then, using time-domain peak acceleration, frequency response function, frequency-domain modal frequency, and modal shape indicators, a detailed analysis of the tunnel's dynamic response is conducted.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!