Lactobacillus plantarum LC27 and Bifidobacterium longum LC67 simultaneously alleviate high-fat diet-induced colitis, endotoxemia, liver steatosis, and obesity in mice.

Nutr Res

Department of Life and Nanopharmaceutical Sciences, College Pharmacy, Kyung Hee University, 26, Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Republic of Korea. Electronic address:

Published: July 2019

Long-term feeding of a high-fat diet (HFD) induces endotoxemia and gastrointestinal inflammation by disturbing gut microbiota composition and membrane permeability, resulting in the acceleration of obesity. Some probiotics exhibit anti-inflammatory effects in vitro and in vivo. Therefore, we hypothesized that anti-inflammatory probiotics could lead to the simultaneous attenuation of endotoxemia, liver steatosis, obesity, and colitis in mice with HFD-induced obesity. Herein, we examined whether Lactobacillus plantarum LC27 and/or Bifidobacterium longum LC, which significantly suppressed NF-κB activation in lipopolysaccharide- or fecal lysate-stimulated Caco-2 cells, could simultaneously alleviate liver steatosis and colitis in mice with HFD-induced obesity. Oral administration of LC27, LC67, or their (3:1) mixture (LM) reduced HFD-induced aspartate transaminase, alanine transaminase, triglyceride, total cholesterol, and lipopolysaccharide levels in the blood and liver. Their treatments also suppressed HFD-induced NF-κB activation and increased AMP-activated protein kinase (AMPK) activation and claudin-1 and occludin expression in the liver and colon. Moreover, LC27, LC67, or LM treatment reduced HFD-induced Firmicutes and Proteobacteria populations in gut microbiota and fecal lipopolysaccharide production. The hypothesis was supported by the findings that anti-inflammatory LC27 and/or LC67 simultaneously alleviated liver steatosis, obesity, and colitis by regulating NF-κB and AMPK activation through the inhibition of gut microbiota lipopolysaccharide production.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.nutres.2019.03.008DOI Listing

Publication Analysis

Top Keywords

liver steatosis
16
steatosis obesity
12
gut microbiota
12
lactobacillus plantarum
8
plantarum lc27
8
bifidobacterium longum
8
lc67 simultaneously
8
simultaneously alleviate
8
endotoxemia liver
8
obesity colitis
8

Similar Publications

Background: Diabetes mellitus is associated with morphological and functional impairment of the heart primarily due to lipid toxicity caused by increased fatty acid metabolism. Extracellular signal-regulated protein kinases 1 and 2 (ERK1/2) have been implicated in the metabolism of fatty acids in the liver and skeletal muscles. However, their role in the heart in diabetes remains unclear.

View Article and Find Full Text PDF

Background: The inheritance of the short allele, encoding the serotonin transporter (SERT) in humans, increases susceptibility to neuropsychiatric and metabolic disorders, with aging and female sex further exacerbating these conditions. Both central and peripheral mechanisms of the compromised serotonin (5-HT) system play crucial roles in this context. Previous studies on SERT-deficient (Sert) mice, which model human SERT deficiency, have demonstrated emotional and metabolic disturbances, exacerbated by exposure to a high-fat Western diet (WD).

View Article and Find Full Text PDF

In health, the liver is a metabolically flexible organ that plays a key role in regulating systemic lipid and glucose concentrations. There is a constant flux of fatty acids (FAs) to the liver from multiple sources, including adipose tissue, dietary, endogenously synthesized from non-lipid precursors, intrahepatic lipid droplets and recycling of triglyceride-rich remnants. Within the liver, FAs are used for triglyceride synthesis, which can be oxidized, stored or secreted in very low-density lipoproteins into the systemic circulation.

View Article and Find Full Text PDF

Background: Hepatitis B (HBV) and Delta (HDV) virus infections pose critical public health challenges, particularly in Romania, where HDV co-infection is underdiagnosed.

Methods: This study investigates the epidemiology, risk factors, and clinical outcomes of HBV/HDV co-infection in vulnerable populations, leveraging data from the LIVE(RO2) program. Conducted between July 2021 and November 2023, the program screened 320,000 individuals across 24 counties, targeting socially disadvantaged groups such as rural residents, the Roma community, and those lacking health insurance.

View Article and Find Full Text PDF

A Guinea Pig Model of Pediatric Metabolic Dysfunction-Associated Steatohepatitis: Poor Vitamin C Status May Advance Disease.

Nutrients

January 2025

Section of Preclinical Disease Biology, Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, 1870 Frederiksberg, Denmark.

Children and teenagers display a distinct metabolic dysfunction-associated steatohepatitis (MASH) phenotype, yet studies of childhood MASH are scarce and validated animal models lacking, limiting the development of treatments. Poor vitamin C (VitC) status may affect MASH progression and often co-occurs with high-fat diets and related metabolic imbalances. As a regulator of DNA methylation, poor VitC status may further contribute to MASH by regulating gene expression This study investigated guinea pigs-a species that, like humans, depends on vitC in the diet-as a model of pediatric MASH, examining the effects of poor VitC status on MASH hallmarks and global DNA methylation levels.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!