The aim of the present study was to investigate the roles of microRNA-152 (miR-152) in the initiation and progression of breast cancer. The expression level of miR-152 was detected in human breast cancer tissue and a panel of human breast cancer cell lines using qRT-PCR. Results found that miR-152 expression was significantly downregulated in breast cancer tissue samples compared to adjacent noncancerous tissues as well as in breast cancer cell lines. Overexpression of miR-152 significantly suppressed breast cancer cell proliferation, migration, and invasion. Luciferase reporter assay results found that ROCK1 is a direct and functional target gene of miR-152 in breast cancer. In addition, downexpression of ROCK1 could inhibit breast cancer cell proliferation, migration, and invasion. These findings indicate that miR-152 inhibited breast cancer growth and metastasis through negative regulation of ROCK1 expression. These data suggest that miR-152/ROCK1 pathway may be a useful therapeutic target for breast cancer treatment.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7851537PMC
http://dx.doi.org/10.3727/096504019X15519249902838DOI Listing

Publication Analysis

Top Keywords

breast cancer
44
cancer cell
16
cell proliferation
12
proliferation migration
12
migration invasion
12
breast
11
cancer
11
human breast
8
cancer tissue
8
cell lines
8

Similar Publications

Objective: To understand how breast cancer patients experience the surgical decision process and identify strategies surgeons can employ to empower patients to engage in decision-making.

Background: Patient engagement in decision-making is associated with improved patient outcomes. Although, some patients prefer that their healthcare provider drive the decision, the benefits of engaging in decision-making hold true even for patients who prefer to defer to their provider.

View Article and Find Full Text PDF

Lung cancer is the third most prevalent cancer, following breast cancer in women and prostate cancer in men. However, it remains the leading cause of cancer-related mortality. As treatment options have advanced, the significance of accurate diagnosis has increased, enabling targeted and more personalized therapeutic treatments.

View Article and Find Full Text PDF

Enhanced detection of circulating tumor cells using a MUC1 promoter-driven recombinant adenovirus.

Front Oncol

January 2025

The Pq Laboratory of BiomeDx/Rx, Department of Biomedical Engineering, Binghamton University, Binghamton, NY, United States.

Introduction: Circulating tumor cells (CTCs) have attracted significant interest as a biomarker for cancer diagnosis. In this study, we judiciously constructed a recombinant MUC1-dependent adenovirus (rAdF35-MUC1) that can selectively replicate and overexpress copepod super green fluorescent proteins (copGFP) in MUC1-positive tumor cells to investigate its role in the detection of CTCs.

Methods: We conducted a comparative study between rAdF35-MUC1 and the existing hTERT-dependent adenovirus (rAdF35-hTERT).

View Article and Find Full Text PDF

Decoding the Molecular Basis of the Specificity of an Anti-sTn Antibody.

JACS Au

January 2025

UCIBIO-Applied Molecular Biosciences Unit, Department of Chemistry, NOVA School of Science and Technology, NOVA University Lisbon, 2829-516 Caparica, Portugal.

The mucin -glycan sialyl Tn antigen (sTn, Neu5Acα2-6GalNAcα1--Ser/Thr) is an antigen associated with different types of cancers, often linked with a higher risk of metastasis and poor prognosis. Despite efforts to develop anti-sTn antibodies with high specificity for diagnostics and immunotherapy, challenges in eliciting high-affinity antibodies for glycan structures have limited their effectiveness, leading to low titers and short protection durations. Experimental structural insights into anti-sTn antibody specificity are lacking, hindering their optimization for cancer cell recognition.

View Article and Find Full Text PDF

Activity-Based Bioluminescent Logic-Gate Probe Reveals Crosstalk Between the Inflammatory Tumor Microenvironment and ALDH1A1 in Cancer Cells.

JACS Au

January 2025

Department of Chemistry, Beckman Institute for Advanced Science and Technology, and Cancer Center at Illinois, University of Illinois Urbana-Champaign, Urbana, Illinois 61801, United States.

Cancer cells with high expression of aldehyde dehydrogenase 1A1 (ALDH1A1) are more resistant to chemotherapy, contribute to tumor progression, and are associated with poor clinical outcomes. ALDH1A1 plays a critical role in protecting cells from reactive aldehydes and, in the case of stem cells, regulates their differentiation through the retinoic acid signaling pathway. Despite the importance of this enzyme, methods to study ALDH1A1 high-expressing cancer cells in vivo remain limited.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!