Thermodynamic insights and molecular environments into catanionic surfactant systems: Influence of chain length and molar ratio.

J Colloid Interface Sci

Enhanced Oil Recovery Research Institute, China University of Petroleum, Beijing 102249, China; China University of Geoscience, Beijing 100083, China. Electronic address:

Published: July 2019

Hypothesis: Imidazolium-based Ionic liquids as new generation cationic surfactants can provide designable alkyl chain length. In the catanionic surfactant systems, the alkyl chain lengths and molar ratios can greatly influence the interactions such as electrostatic and hydrophobic interaction. The variation in these interactions has a significant effect on the molecular environments of the self-assembly structure, and this process is always accompanied by the transition of aggregates and release or consumption of heat. Hence, it is of interest to study the relationship between intermolecular interactions, molecular environments, self-assembly structure and the change in energy of system in the catanionic surfactant mixed systems.

Experiments: The enthalpy change ΔH of titrations the imidazolium-based into SDS micelle solution was studied to characterize the heat by using isothermal titration calorimetry (ITC) during the transitions of the aggregate structures. The corresponding self-assembly structure was monitored via cryogenic transmission electron microscopy (cryo-TEM). Employing proton magnetic resonance (H NMR), we focus on the interactions between imidazolium-based ILs and SDS based on the variations in the molecular environments of aggregates.

Findings: Of these imidazolium-based ionic liquids/SDS system, the 1-octyl-3-methylimidazolium ([OMIM]Cl)/SDS system shows several features such as intense energy absorption and releasing processes, which indicate the formation of high entanglement wormlike micelles and vesicles. This is related to the formation of self-adjusting state between the SDS and [OMIM]Cl molecules due to the balance between the electrostatic interaction and hydrophobic interaction. Varying the alkyl chain length appears to cause significant differences to the molecular environments. From the molecular environments, three different models about the polarity of the catanionic surfactant molecules are used to explain the balance of the intermolecular interactions.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jcis.2019.04.023DOI Listing

Publication Analysis

Top Keywords

molecular environments
24
catanionic surfactant
16
chain length
12
alkyl chain
12
self-assembly structure
12
surfactant systems
8
imidazolium-based ionic
8
hydrophobic interaction
8
interactions molecular
8
environments self-assembly
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!