Drug-resistant tuberculosis (TB) is a major public health problem. There is little information regarding the genotypic-phenotypic association of anti-TB drugs, especially for second-line drugs. This study compared phenotypic drug susceptibility testing (DST) with predictions based on whole-genome sequencing (WGS) data for 266 Mycobacterium tuberculosis isolates. Phenotypic DST used the standard proportional method. Clinical isolates of M. tuberculosis collected in Thailand between 1998 and 2013 comprised 51 drug-sensitive strains, six mono-resistant strains, two multiple-resistant strains, 88 multi-drug-resistant strains, 95 pre-extensively drug-resistant strains and 24 extensively drug-resistant strains. WGS analysis was performed using the computer programs PhyResSE and TB-Profiler. TB-Profiler had higher average concordance with phenotypic DST than PhyResSE for both first-line (91.96% vs. 91.4%) and second-line (79.67% vs. 78.20%) anti-TB drugs. The average sensitivity for all anti-TB drugs was also higher (83.13% vs. 72.08%) with slightly lower specificity (83.50% vs. 86.68%). Regardless of the program used, isoniazid, rifampicin and amikacin had the highest concordance with phenotypic DST (96.2%, 93.5% and 95.6%, respectively). Ethambutol, ethionamide and fluoroquinolones had the lowest concordance (87.34%, 81.44% and 73.85%, respectively). Concordance rates of ofloxacin (a second-generation fluoroquinolone), levofloxacin, moxifloxacin and gatifloxacin (third- and fourth-generation fluoroquinolones) were 91.79%, 76.62%, 72.64% and 57.35%, respectively. Discordance between phenotypic and WGS-based DSTs may be due, in part, to the choice of critical concentration and variable reproducibility of the phenotypic tests. It may also be due to limitations of the mutation databases (especially for the second-line drugs) and the analysis program used. Mutations related to fluoroquinolone resistance, especially the later generations, need to be identified.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ijantimicag.2019.04.004 | DOI Listing |
Infect Dis Clin Microbiol
December 2024
Department of Medical Pharmacology, Sivas Cumhuriyet University Faculty of Medicine, Sivas, Türkiye.
Objective: Tuberculosis (TB) is a public health problem. This study aimed to determine the growth rates and drug susceptibility levels of patients with complex (MTC) growth in cultures obtained and to compare the results with the growth rates and drug susceptibility levels found in our country and other countries. It also aimed to evaluate the results of supplementing classical methods such as Lowenstein-Jensen (LJ) with liquid TK MEDIUM and to determine the relationship between the growth rates obtained with both methods.
View Article and Find Full Text PDFBrief Bioinform
November 2024
Institute of Medical Information, Chinese Academy of Medical Sciences and Peking Union Medical College, Chaoyang District, Beijing 100020, China.
Drug resistance in Mycobacterium tuberculosis (Mtb) is a significant challenge in the control and treatment of tuberculosis, making efforts to combat the spread of this global health burden more difficult. To accelerate anti-tuberculosis drug discovery, repurposing clinically approved or investigational drugs for the treatment of tuberculosis by computational methods has become an attractive strategy. In this study, we developed a virtual screening workflow that combines multiple machine learning and deep learning models, and 11 576 compounds extracted from the DrugBank database were screened against Mtb.
View Article and Find Full Text PDFTurk J Med Sci
December 2024
Research Center for Vaccine and Drugs, Research Organization for Health, National Research and Innovation Agency (BRIN), Cibinong, Bogor, Indonesia.
Background/aim: Tuberculosis (TB) has become the world's deadliest disease. The lack of an effective therapeutic drug to treat it is one of the obstacle for doctors. Today, multidrug-resistant TB cases are increasing.
View Article and Find Full Text PDFChemMedChem
December 2024
NIPER Hyderabad: National Institute of Pharmaceutical Education and Research Hyderabad, Chemical Sciences, Balanagar, 500037, Hyderabad, INDIA.
The continued prevalence of drug-resistant Mycobacterium tuberculosis (Mtb) strains, particularly against first-line antitubercular (anti-TB) drugs, presents an impending public health threat that necessitates the exploration and development of New Chemical Entities (NCEs). In search of new anti-TB leads, a library of ethyl 5-(1-benzyl-1H-indol-5-yl)isoxazole-3-carboxylates were generated through a strategy of scaffold hopping from the proven isoxazole-3-carboxylate-based anti-TB pharmacophore. We evaluated their antibacterial potential against a panel of pathogenic bacteria and MtbH37Rv strains.
View Article and Find Full Text PDFDrugs
December 2024
Division of Clinical Infectious Diseases, Research Center Borstel, Leibniz Lung Center, Borstel, Germany.
Objectives: To investigate the safety profiles and clinical outcomes in a continuous cohort of tuberculosis (TB) patients from a clinical referral centre in Germany receiving self-administered outpatient parenteral antimicrobial therapy (sOPAT).
Methods: We conducted a retrospective observational cohort study of patients receiving sOPAT after discharge from the Research Center Borstel in Germany between January 2015 and December 2020. Data were extracted from medical records.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!