A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

A role for Rab11 in the homeostasis of the endosome-lysosomal pathway. | LitMetric

A role for Rab11 in the homeostasis of the endosome-lysosomal pathway.

Exp Cell Res

The Department of Biochemistry and Molecular Biology and Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Victoria, 3010, Australia. Electronic address:

Published: July 2019

The small GTPases Rab11a and 11b are key regulators of membrane transport, localised to the recycling endosomes and also early endosomes. The function of Rab11 within the recycling pathway has been well defined, however, the role of Rab11 at the early endosomes remains poorly characterised. Here, we have generated HeLa cell lines devoid of either Rab11a or Rab11b using CRISPR/Cas9 to functionally dissect the roles of these two Rab11 family members in recycling and in the endosomal-lysosomal system. Both Rab11a and Rab11b contribute to the dynamics of tubulation arising from recycling endosomes whereas Rab11a has the major role in recycling of transferrin receptor. Deletion of either Rab11a or Rab11b resulted in the formation of enlarged early endosomes and perturbation of the endosomal-lysosomal pathway. Strikingly, Rab11a knock-out cells showed an increased density of functional late endosomes/lysosomes as well as lysotracker-positive organelles which were primarily concentrated in a perinuclear location, indicating that the homeostasis of the endosome/lysosome pathway had been perturbed. Moreover, in Rab11a knockout cells there was a functional defect in the intracellular recycling of the cation-independent mannose 6-phosphate receptor (CI-M6PR) between the late endosomes and the TGN, a defect associated with enhanced degradation of CI-M6PR. Expression of wild-type Rab11a in Rab11a knockout cells rescued the late endosome/lysosome phenotype. Overall, these results indicate that Rab11a and Rab11b have overlapping and distinct functions and that Rab11a, unexpectedly, plays a central role in the homeostasis of endosomal-lysosomal biogenesis.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.yexcr.2019.04.010DOI Listing

Publication Analysis

Top Keywords

rab11a rab11b
16
early endosomes
12
rab11a
11
role rab11
8
recycling endosomes
8
rab11a knockout
8
knockout cells
8
recycling
6
endosomes
6
role
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!