Myogenic differentiation is precisely regulated with a cascade of genes and pathways. The previous study has demonstrated the muscle-specific deletion of Nr4a1 impairs muscle growth. However, it is still unclear whether muscular Nr4a1 deletion may directly impact myoblast physiology. Here, the present study delves into the molecular mechanism of Nr4a1 in C2C12. Through the analysis of RNAseq and microarray data, Nr4a1 was identified to highly correlate with the expression of myogenic factors. In C2C12, except confirming the induction of Nr4a1 mRNA and protein levels upon the initiation of differentiation, we observed a novel shuttling phenomenon of Nr4a1 from nucleus to cytoplasm in myoblast with a higher expression of MyoD or differentiated myotubes. Furthermore, Nr4a1 overexpression in C2C12 accelerates myoblasts' differentiation and increases myoblast fusion. In contrast, ablation of Nr4a1 expression in C2C12 inhibits the differentiation and fusion process. Meanwhile, in quiescent satellite cells, Nr4a1 expressed is not detected, while its protein level is highly induced in both BaCl-induced muscle regeneration followed with satellite cells activation and satellite cells of cultured single myofiber. The mechanism may be through the Nr4a1-mediated expression of myogenic factors, e.g. MyoD and MyoG. In summary, the current investigation demonstrates that Nr4a1 is an essential myogenic factor involved in myoblast differentiation.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.bbrc.2019.04.026 | DOI Listing |
Am J Physiol Cell Physiol
December 2024
Exercise Metabolism Research Group, Department of Kinesiology, McMaster University, Hamilton, Ontario, Canada.
Cellular senescence has been implicated in the aging-related dysfunction of satellite cells, the resident muscle stem cell population primarily responsible for the repair of muscle fibres. Despite being in a state of permanent cell cycle arrest, these cells remain metabolically active and release an abundance of factors that can have detrimental effects on the cellular microenvironment. This phenomenon is known as the senescence-associated secretory phenotype (SASP), and its metabolic profile is poorly characterized in senescent muscle.
View Article and Find Full Text PDFGene
December 2024
Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan. Electronic address:
Circular RNAs (circRNAs) are post-transcriptional regulators generated from backsplicing of pre-mRNAs of host genes. A major circRNA regulatory mechanism involves microRNA (miRNA) sequestering, relieving miRNA-blocked mRNAs for translation and functions. To investigate possible circRNA-host gene relationship, skeletal myogenesis is chosen as a study model for its developmental importance and for readily available muscle tissues from farm animals for studies at different myogenic stages.
View Article and Find Full Text PDFPhysiology (Bethesda)
December 2024
School of Animal Sciences, Virginia Polytechnic Institute & State University, Blacksburg, VA, USA.
J Cachexia Sarcopenia Muscle
February 2025
Clinical Nutrition Service Center, Department of General Surgery, Nanjing Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu, China.
Background: Skeletal muscle remodelling can cause clinically important changes in muscle phenotypes. Satellite cells (SCs) myogenic potential underlies the maintenance of muscle plasticity. Accumulating evidence shows the importance of succinate in muscle metabolism and function.
View Article and Find Full Text PDFJ Cachexia Sarcopenia Muscle
February 2025
Sprott Centre for Stem Cell Research, Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, Canada.
Background: Duchenne muscular dystrophy (DMD) is a devastating disease characterized by progressive muscle wasting that leads to diminished lifespan. In addition to the inherent weakness of dystrophin-deficient muscle, the dysfunction of resident muscle stem cells (MuSC) significantly contributes to disease progression.
Methods: Using the mdx mouse model of DMD, we performed an in-depth characterization of disease progression and MuSC function in dystrophin-deficient skeletal muscle using immunohistology, isometric force measurements, transcriptomic analysis and transplantation assays.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!