Self-assembled high molecular weight inulin nanoparticles: Enzymatic synthesis, physicochemical and biological properties.

Carbohydr Polym

Departamento de Ingeniería Celular y Biocatálisis, Instituto de Biotecnología, Universidad Nacional Autónoma de México, C. P. 62250, Cuernavaca, Morelos, Mexico. Electronic address:

Published: July 2019

Inulin has interesting physicochemical and functional properties, and therefore a wide range of applications in the food and medical industries. It has gained great traction due to its ability to form nanoparticles and its possible application as nanovehicle for drug delivery. In this work, we demonstrated that the enzymatically-synthesized high molecular weight (HMW) inulin forms stable spherical nanoparticles with an average diameter of 112 ± 5 nm. The self-assemblage of HMW inulin nanoparticles is carried out during enzymatic synthesis of the polymer, and become detectable after a certain critical aggregation concentration (CAC) is reached. Both, the CAC and nanoparticle size are influenced by the reaction temperature. These nanoparticles are not toxic for peripheral blood mononuclear cells, at concentrations below 200 μg/mL; no significant prebiotic potential was detected in cultures of 13 probiotic strains. This work contributes to a better understanding of the formation of HMW inulin nanoparticles and their biological properties.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.carbpol.2019.03.060DOI Listing

Publication Analysis

Top Keywords

inulin nanoparticles
12
hmw inulin
12
high molecular
8
molecular weight
8
enzymatic synthesis
8
biological properties
8
nanoparticles
6
inulin
5
self-assembled high
4
weight inulin
4

Similar Publications

Colon cancer is a leading cause of cancer-related morbidity and mortality worldwide, necessitating advancements in therapeutic strategies to improve outcomes. Current treatment modalities, including surgery, chemotherapy, and radiation, are limited by systemic toxicity, low drug utilization rates, and off-target effects. Colon-targeted drug delivery systems (CDDS) offer a promising alternative by leveraging the colon's unique physiology, such as near-neutral pH and extended transit time, to achieve localized and controlled drug release.

View Article and Find Full Text PDF

In Silico-Guided Discovery of Polysaccharide Derivatives as Adjuvants in Nanoparticle Vaccines for Cancer Immunotherapy.

ACS Nano

January 2025

National Glycoengineering Research Center, Shandong Key Laboratory of Carbohydrate Chemistry and Glycobiology, NMPA Key Laboratory for Quality Research and Evaluation of Carbohydrate-Based Medicine, Shandong University, Qingdao 266237, China.

Cancer vaccines utilizing nanoparticle (NP) structures that integrate antigens and adjuvants to enhance delivery and stimulate immune responses are emerging as a promising avenue in cancer immunotherapy. However, the development of cancer vaccines has been significantly hindered by the low immunogenicity of tumor antigens. To address this challenge, substantial efforts have been made in developing innovative adjuvants to elicit effective immune responses.

View Article and Find Full Text PDF

Effect of microencapsulated Fiber2-displaying probiotics loaded with inulin nanoparticles on immunity against fowl adenovirus serotype 4 in chickens.

Poult Sci

January 2025

College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China; Heilongjiang Provincial Key Laboratory of Pathogenic Mechanism for Animal Disease and Comparative Medicine, College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China. Electronic address:

In this study, phthalate inulin nanoparticles (PINs) were chemically modified and characterized. The internalization of PINs into the probiotic E. faecalis, which delivering Fiber2 protein of fowl adenovirus serotype 4 (FAdV-4), was investigated.

View Article and Find Full Text PDF

Microencapsulation of Pickering nanoemulsions containing walnut oil stabilized using soy protein-curcumin composite nanoparticles: Fabrication and evaluation of a novel plant-based milk substitute.

Food Chem

December 2024

School of Food and Biological Engineering, Key Laboratory of Modern Agricultural Products Processing of Anhui Province, Hefei University of Technology, Hefei 230601, China. Electronic address:

Plant protein-stabilized Pickering nanoemulsions show potential as plant-based milk substitutes; however, their stability is challenged by mechanical stress during transportation and oxidative deterioration during storage. Herein, soybean isolate protein-curcumin composite nanoparticle (SPI-Cur-NPs)-stabilized Pickering nanoemulsions were converted into microcapsule powders via spray-drying with maltodextrin (MD), trehalose anhydrous (TA), and inulin (IN) as wall materials. Robust intermolecular hydrogen bonds and an amorphous structure were formed using composite wall materials, reducing microcapsule surface fissures while improving encapsulation rate (92.

View Article and Find Full Text PDF

S-Adenosylmethionine (SAMe) is a crucial endogenous molecule in vital biochemical processes such as DNA, RNA, and protein methylation. It has been found beneficial in the treatment of liver disease, osteoarthritis, and particularly depression. However, SAMe's therapeutic potential is limited by low bioavailability due to poor permeability and extensive liver metabolism.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!