Phase separation and emergence of collective motion in a one-dimensional system of active particles.

J Chem Phys

Université Côte d'Azur, Laboratoire J. A. Dieudonné, UMR 7351 CNRS, 06108 Nice, France.

Published: April 2019

We study numerically a one-dimensional system of self-propelled particles, where the state of the particles is given by their moving direction (left or right), which is encoded by a spin-like variable, and their position. Particles interact by short-ranged, spring-like attractive forces and do not possess spin-spin interactions (i.e., velocity alignment). Newton's third law is broken in this model by assuming an asymmetric interaction range that is larger in the direction of the moving direction of the particle. We show that in this nonequilibrium system, due to the absence of the action-reaction symmetry, there exists an intimate link between phase separation and the formation of highly coherent, spatially localized, moving flocks (i.e., collective motion). More specifically, we prove the existence of two fundamentally different types of active phase separation, which we refer to as neutral phase separation (NPS) and polar phase separation. Furthermore, we indicate that NPS is subdivided in two classes with distinct critical exponents. These results are of key importance to understand that in active matter, there exist several phase-separation classes and that the emergence of polar, self-organized patterns (i.e., flocks) does not require the presence of a velocity alignment.

Download full-text PDF

Source
http://dx.doi.org/10.1063/1.5085840DOI Listing

Publication Analysis

Top Keywords

phase separation
20
collective motion
8
one-dimensional system
8
moving direction
8
velocity alignment
8
phase
5
separation emergence
4
emergence collective
4
motion one-dimensional
4
system active
4

Similar Publications

Catalytic Assembly of Peptides Mediated by Complex Coacervates.

ACS Nano

January 2025

State Key Laboratory of Physical Chemistry of Solid Surface, Key Laboratory of Chemical Biology of Fujian Province, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, P. R. China.

The assembly of peptides is generally mediated by liquid-liquid phase separation, which enables control over assembly kinetics, final structure, and functions of peptide-based supramolecular materials. Modulating phase separation can alter the assembly kinetics of peptides by changing solvents or introducing external fields. Herein, we demonstrate that the assembly of peptides can be effectively catalyzed by complex coacervates.

View Article and Find Full Text PDF

Fluorine-rich poly(arylene amine) membranes for the separation of liquid aliphatic compounds.

Science

January 2025

State Key Laboratory of Coordination Chemistry, MOE Key Laboratory of High-Performance Polymer Materials & Technology, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, China.

We explored the potential for membrane materials to reduce energy and carbon requirements for the separation of aliphatic hydrocarbon feedstocks and products. We developed a series of fluorine-rich poly(arylene amine) polymer membranes that feature rigid polymer backbones with segregated perfluoroalkyl side chains. This combination imbues the polymers with resistance to dilation induced by hydrocarbon immersion without the loss of solution-based membrane fabrication techniques.

View Article and Find Full Text PDF

Illegal additives such as oxyphenisatine and its esters are prevalent in the slimming food industry, necessitating a robust analytical method for their detection. This study presents a novel UPLC-MS/MS method for the rapid and accurate quantification of total oxyphenisatine levels in fermented green plum, following hydrolysis of its esters. An efficient ultrasonic extraction with a methanol and 0.

View Article and Find Full Text PDF

Background: Alzheimer's Disease (AD) is associated with sleep disturbances. Moreover, individuals with sleep disturbances have been reported to have a higher risk for developing AD. The measurement of sleep behavior therefore opens the opportunity for a potential digital biomarker of AD.

View Article and Find Full Text PDF

Background: Sex-specific functional-brain changes during memory tasks have been reported along the Alzheimer's disease (AD) continuum. However, mid-life risk factor effects on memory-related neural activation remain less clear in women with increased AD risk. Here we examined brain activations during a modified pattern-separation task and their associations with verbal memory scores in midlife women at risk for AD due to family history.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!