Background: Many bone-related diseases such as osteoporosis and rheumatoid arthritis are commonly associated with the excessive activity of osteoclasts. Polyscias fruticosa has been used as traditional medicine for the treatment of ischemia and inflammation and also eaten as a salad. However, its effect on the bone related diseases has not been investigated yet.
Purpose: This study aimed to investigate the effect of ethanol extract of P. fruticosa on RANKL-induced osteoclastogenesis in vitro and LPS-induced bone loss in mouse, and evaluate anti-osteoclastogenic activities of its major constituents.
Methods: BMMs or RAW264.7 cells were treated with ethanol extract from P. fruticose leaves (EEPL), followed by an evaluation of cell viability, RANKL-induced osteoclast differentiation, actin-ring formation, and resorption pits activity. Effects of EEPL on RANKL-induced phosphorylation of MAPKs were evaluated by Western blotting. The expression levels of NFATc1 and c-Fos were evaluated by Western blotting or immunofluorescence assay. The expression levels of osteoclast-specific marker genes were evaluated by Western blotting and reverse transcription-qPCR analysis. A LPS-induced murine bone loss model was used to evaluate the protective effect of EEPL on inflammation-induced bone loss. HPLC analysis was performed to identify the major constituents of EEPL.
Results: EEPL significantly inhibited RANKL-induced osteoclast differentiation by decreasing the number of osteoclasts, osteoclast actin-ring formation, and bone resorption. EEPL suppressed RANKL-induced phosphorylation of p38 and JNK MAPKs, as well as the expression of c-Fos and NFATc1. EEPL decreased the expression levels of osteoclast marker genes, including MMP-9, TRAP and CtsK. Mice treated with EEPL significantly protected the mice from LPS-induced osteoclast formation and bone destruction as indicated by micro-CT and histological analysis of femurs. We also identified 3-O-[β-d-glucopyranosyl-(1→4)-β-d-glucuronopyranosyl] oleanolic acid 28-O-β-d-glucopyranosyl ester (1) and quercitrin (3) as the active constituents in EEPL for inhibiting RANKL-induced osteoclast differentiation.
Conclusion: The results showed that EEPL exerted anti-osteoclastogenic activity in vitro and in vivo by inhibiting RANKL-induced osteoclast differentiation and function, and suggested that EEPL could have beneficial applications for preventing or inhibiting osteoclast-mediated bone diseases.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.phymed.2019.152908 | DOI Listing |
Minerva Dent Oral Sci
January 2025
RAK College of Dental Sciences, Department of Prosthodontics, RAK Medical and Health Sciences University, Ras Al-Khaimah, United Arab Emirates.
Introduction: The aim of this study was to evaluate the long-term treatment outcomes of basal implants in patients with severely resorbed ridges, including the survival and success rates, patient complaints, satisfaction, and Quality of Life.
Evidence Acquisition: An extensive electronic search was conducted on the search engines: PubMed, Web of Science, and Google Scholar using Boolean Operators (AND, OR, NOT) and the key words (basal implants, Corticobasal implants, Strategic Implants, severely resorbed ridge, severely atrophic ridge, treatment outcome, patient satisfaction) within the last 10 years.
Evidence Synthesis: A total of 21 articles were found, encompassing 9732 basal implants placed in 1219 patients.
Adv Exp Med Biol
January 2025
Requalite GmbH, Gräfelfing, Germany.
Peptide nanofibers have been attractive targets for regenerative medicine applications due to their tailorability to be easily functionalized for specific bioactivity, biocompatibility, ease of synthesis, adjustability of their physicochemical characteristics, and lack of biological contamination. Research groups have investigated their use for the regeneration of various tissues, such as bone, cartilage, brain, peripheral nerves, cardiac tissue, vascular tissues, endocrine cells, muscles, etc., for the treatment of degenerative diseases or tissue loss due to accidents or aging.
View Article and Find Full Text PDFVet Res Commun
January 2025
Facultad de Ciencias Veterinarias. Cátedra de Enfermedades Infecciosas, Universidad de Buenos Aires, Ciudad Autónoma de Buenos Aires, Buenos Aires, Argentina.
Protothecosis is a severe, emerging opportunistic infection caused by the saprophytic, achlorophyllous microalgae of the genus Prototheca. Though uncommon, human and animal cases are increasing worldwide, making awareness of this fungal-like pathogen important in both human and veterinary medicine. We report a fatal case of disseminated protothecosis caused by P.
View Article and Find Full Text PDFCalcif Tissue Int
January 2025
Fondazione FIRMO Onlus, Italian Foundation for the Research On Bone Diseases, Florence, Italy.
Gaucher disease is a rare lysosomal storage disorder characterized by the accumulation of glucocerebroside lipids within multiple organs due to a deficiency of the lysosomal enzyme (acid β-glucosidase). It is an inherited autosomal recessive disease. The onset of symptoms can vary depending on disease type and severity, with milder forms presenting in adulthood.
View Article and Find Full Text PDFOphthalmic Plast Reconstr Surg
January 2025
Department of Ophthalmology, Massachusetts Eye and Ear, Harvard Medical School, Boston, Massachusetts.
A 73-year-old male with a history of incidentally diagnosed Paget disease of bone affecting the skull and left orbit 2 years prior presented with 3 months of vision loss, proptosis, and periorbital swelling of the OS. Examination showed best-corrected Snellen visual acuity of 20/150 in the affected eye, intact motility, 7 mm of relative proptosis, significant dilated and tortuous "corkscrew" conjunctival vessels, serous choroidal and retinal detachments, optic nerve hyperemia, and venous tortuosity and dilation. Although the bony lesions in the left orbit were stable from 1 year prior on imaging, the diagnostic angiogram demonstrated osseous blush and hypervascularity of the lesion.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!