In vitro ruminal fermentations resemble in vivo fermentations with respect to substrate consumption and distribution of fermentation products in short term (1-5 d) incubations. However, little is known regarding changes in in vitro fermentations over prolonged incubation or multiple transfers. Gas production, pH, fermentation products, and bacterial community composition were examined in duplicate in vitro fermentations of switchgrass plus distillers grains that were transferred at 3-4 d intervals over 900 d. Additionally, duplicate fermentations inoculated from 160 d-old enrichments into the same medium but supplemented with ethanol, and transferred at 3-4 d over a 730 d period were characterized. SWG and SWG + E fermentation showed marked differences in community composition, pH, total product concentrations and ratios, relative to each other and to the original inoculum. The results have implications for the use of ruminal inocula for industrial production of short- and medium-chain fatty acids via the carboxylate platform.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.biortech.2019.121324 | DOI Listing |
Appl Biochem Biotechnol
January 2025
Department of Biological Sciences, UESC - Universidade Estadual de Santa Cruz, Rodovia Jorge Amado, Km 16, Ilhéus, BA, 45662-900, Brazil.
In the context of agribusiness, the agricultural and livestock sectors generate a considerable quantity of waste on a daily basis. Solid-state fermentation (SSF) represents a potential alternative for mitigating the adverse effects of residue accumulation and for producing high-value products such as enzymes. Pleurotus pulmonarius is capable of producing a number of commercial enzymes, including amylases.
View Article and Find Full Text PDFBiotechnol Prog
January 2025
Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu, India.
Type 2 diabetes mellitus (T2DM) and obesity are critical global health issues with rising incidence rates. Glucagon-like peptide-1 (GLP-1) analogues have emerged as effective treatments due to their ability to regulate blood glucose levels and gastric emptying through central nervous signals involving hypothalamic receptors, such as leptin. To address the short plasma half-life of native GLP-1, a C-16 fatty acid was conjugated to lysine in the GLP-1 analogue sequence to enhance its longevity.
View Article and Find Full Text PDFRisk Manag Healthc Policy
January 2025
Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Universitas Padjadjaran, Sumedang, 45363, Indonesia.
Ethanol, a bioactive compound prevalent in both social and industrial applications, is present in alcoholic beverages as well as a range of everyday products. In food, ethanol functions primarily as an additive or a by-product of fermentation, while in pharmaceuticals and cosmetics, it serves as a solvent or preservative. Despite its widespread use, three critical research gaps exist in current literature.
View Article and Find Full Text PDFFront Bioeng Biotechnol
January 2025
Department of Bioscience and Biotechnology, Konkuk University, Seoul, Republic of Korea.
Fermentation of ginseng extract is limited by the low concentration of compound K (CK), a bioactive ginsenoside. In this study, a novel approach combining fermentation with cellulase conversion was used to enhance CK production from high concentrations of American ginseng extract (AGE). The reaction conditions, including the feeding rate and concentrations of carbon source, enzyme type, AGE and enzyme concentrations, temperature, pH, and timing of enzyme addition, were optimized.
View Article and Find Full Text PDFMycobiology
December 2024
Department of Clinical Laboratory Sciences, Faculty of Applied Medical Sciences, Umm Al-Qura University, Makkah, Saudi Arabia.
Fungi and their natural products, like secondary metabolites, have gained a huge demand in the last decade due to their increasing applications in healthcare, environmental cleanup, and biotechnology-based industries. The fungi produce these secondary metabolites (SMs) during the different phases of their growth, which are categorized into terpenoids, alkaloids, polyketides, and non-ribosomal peptides. These SMs exhibit significant biological activity, which contributes to the formulation of novel pharmaceuticals, biopesticides, and environmental bioremediation agents.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!