Dyslipidemia is one of the major but modifiable risk factors for atherosclerotic cardiovascular disease (ACVD). Despite the accessibility of statins and other lipid-lowering drugs, the burden of ACVD is still high globally, highlighting the need for new therapeutic approaches. Nucleic acid-based technologies, including antisense oligonucleotides (ASOs), small interfering (si)RNAs, miRNAs, and decoys, are emerging therapeutic modalities for the treatment of ACVD. These technologies aim to degrade gene mRNA transcripts to decrease the levels of atherogenic lipoproteins. Using gene-silencing approaches, the levels of atherogenic lipoproteins can be decreased by targeting proteins that have key roles in lipoprotein metabolism. Here, we highlight preclinical and clinical findings using these approaches for the development of novel therapies against ACVD.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.drudis.2019.04.007 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!