Background: Limited cutaneous systemic sclerosis is one subtype of systemic sclerosis which is characterized by a prototypic multisystem fibrotic disorder.
Objective: This study aimed to further investigate the pathological mechanism of limited cutaneous systemic sclerosis (lcSSc).
Methods: The dataset GSE76807 generated from 10 lcSSc patients and five healthy controls was used. After the preprocessing of the original data, differentially expressed genes (DEGs) were identified and then performed functional analysis, protein-protein interaction (PPI) network and module analysis. Additionally, the transcription factors (TFs) and miRNAs which potentially regulating DEGs were identified and the co-regulatory network was constructed. Finally, DEGs targeted by current drugs were identified. Real-time quantitative PCR analyses of some DEGs in mice with lcSSc were performed.
Results: Total 203 up-regulated and 189 down-regulated DEGs were obtained. The up-regulated genes were enriched in protein interactions at the synapses neuronal system, NCAM1 interactions, and CREB phosphorylation through the activation of CaMKII, while, cilium assembly, and endothelial form of nitric oxide synthase (eNOS) activation were enriched by down-regulated genes. SCRT2 and RABEP1 regulated by miR-218 were hub nodes in the network. DRD4 and GRIN2D were the main drug targets. RABEP1 and SSB were found lowly expressed in mice model with lcSSc.
Conclusion: Endothelial form of NOS activation would be suppressed, and the process of neuronal migration and outgrowth would be activated to participant in the pathological mechanism of lcSSc.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/jocd.12917 | DOI Listing |
This 30-color panel was developed to enable the enumeration and purification of distinct circulating immune cell subsets implicated in the pathogenesis of systemic autoimmune diseases including rheumatoid arthritis (RA), systemic lupus erythematosus (SLE), systemic sclerosis (SSc; scleroderma), Sjögren's disease (SjD), idiopathic inflammatory myopathy (IIM), and others. While designed for application to peripheral blood mononuclear cells, the inclusion of CD45 coupled with the ability to extract cellular autofluorescence spectral signatures enables the application of this panel to other tissue types. Of the 30 total markers, this panel employs 18 markers to profile T cell subsets consisting of different memory subsets and T helper polarities, > 10 markers to profile B cell subsets including double-negative B cells, and a total of 8 lineage markers to identify immune lineages including monocyte and natural killer cell subsets, conventional dendritic cells, plasmacytoid dendritic cells, and basophils.
View Article and Find Full Text PDFWe examine disease-specific and cross-disease functions of the human gut microbiome by colonizing germ-free mice, at risk for inflammatory arthritis, colitis, or neuroinflammation, with over 100 human fecal microbiomes from subjects with rheumatoid arthritis, ankylosing spondylitis, multiple sclerosis, ulcerative colitis, Crohn's disease, or colorectal cancer. We find common inflammatory phenotypes driven by microbiomes from individuals with intestinal inflammation or inflammatory arthritis, as well as distinct functions specific to microbiomes from multiple sclerosis patients. Inflammatory disease in mice colonized with human microbiomes correlated with systemic inflammation, measured by C-reactive protein, in the human donors.
View Article and Find Full Text PDFRespir Med Case Rep
January 2025
Department of Rheumatology of Lucania - UOSD of Rheumatology, "Madonna delle Grazie" Hospital, Matera, Italy.
Background: Anti-Ku antibodies are autoantibodies directed against the Ku protein complex involved in DNA repair. They are typically associated with overlap syndromes featuring polymyositis and systemic sclerosis. Isolated pulmonary involvement without myositis is exceedingly rare.
View Article and Find Full Text PDFJ Transl Autoimmun
June 2025
Rheumatology Research Center, Tehran University of Medical Science, Tehran, Iran.
Iron is a crucial element for living organism in terms of oxygen transport, hematopoiesis, enzymatic activity, mitochondrial respiratory chain function and also immune system function. The human being has evolved a mechanism to regulate body iron. In some rheumatic diseases such as rheumatoid arthritis (RA), systemic lupus erythematous (SLE), systemic sclerosis (SSc), ankylosing spondylitis (AS), and gout, this balanced iron regulation is impaired.
View Article and Find Full Text PDFRev Cardiovasc Med
January 2025
Division of Cardiology, Maggiore della Carità Hospital, 28100 Novara, Italy.
Cardiac manifestations in systemic sclerosis (SSc) are variable and are associated with a poor prognosis, frequently resulting in impaired right ventricular function and heart failure. A high proportion of patients with SSc experience pulmonary arterial hypertension (PAH), interstitial lung disease, or myocardial involvement, all of which can lead to exercise intolerance. In this context, cardiopulmonary exercise testing (CPET) is a useful tool for diagnosing exercise intolerance, elucidating its pathophysiology, and assessing its prognosis.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!