Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
The physiological basis of resilience to age-associated and AD-typical neurodegenerative pathology is still not well understood. So far, the established resilience factor intelligence has been shown to be associated with white matter network global efficiency, a key constituent of which are highly connected hubs. However, hub properties have also been shown to be impaired in AD. Individual predisposition or vulnerability of hub properties may thus modulate the impact of pathology on cognitive outcome and form part of the physiological basis of resilience. 85 cognitively normal elderly subjects and patients with MCI with DWI, MRI and AV45-PET scans were included from ADNI. We reconstructed the global WM networks in each subject and characterized hub-properties of GM regions using graph theory by calculating regional betweenness centrality. Subsequently, we investigated whether regional GM volume (GMV) and structural WM connectivity (WMC) of more hub-like regions was more associated with resilience, quantified as cognitive performance independent of amyloid burden, tau and WM lesions. Subjects with higher resilience showed higher increased regional GMV and WMC in more hub-like compared to less hub-like GM-regions. Additionally, this association was in some instances further increased at elevated amounts of brain pathology. Higher GMV and WMC of more hub-like regions may contribute more to resilience compared to less hub-like regions, reflecting their increased importance to brain network efficiency, and may thus form part of the neurophysiological basis of resilience. Future studies should investigate the factors leading to higher GMV and WMC of hubs in non-demented elderly with higher resilience.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s11682-019-00090-y | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!