In sweetcorn (Zea mays L.), embryo Zn is accumulated mainly as Zn-phytate, whereas endosperm Zn is complexed with a N- or S-containing ligand. Understanding the speciation of Zn in crop plants helps improve the effectiveness of biofortification efforts. Kernels of four sweetcorn (Zea mays L.) varieties were analysed for Zn concentration and content. We also assessed the speciation of the Zn in the embryo, endosperm, and pericarp in situ using synchrotron-based X-ray absorption spectroscopy. The majority of the Zn was in the endosperm and pericarp (72%), with the embryo contributing 28%. Approximately 79% of the Zn in the embryo accumulated as Zn-phytate, whereas in the endosperm most of the Zn was complexed with a N- or S-containing ligand, possibly as Zn-histidine and Zn-cysteine. This suggests that whilst the Zn in the endosperm and pericarp is likely to be bioavailable for humans, the Zn in the embryo is of low bioavailability. This study highlights the importance of targeting the endosperm of sweetcorn kernels as the tissue for increasing bioavailable Zn concentration.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s00425-019-03162-x | DOI Listing |
Plant Biotechnol J
December 2024
State Key Laboratory of Rice Biology (State Key Laboratory of Rice Biology and Breeding), China-IRRI Joint Research Center on Rice Quality and Nutrition, Key Laboratory of Rice Biology and Genetics Breeding of Ministry of Agriculture, China National Center for Rice Improvement, China National Rice Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, China.
Enhanced grain yield and quality traits are everlasting breeding goals. It is therefore of great significance to uncover more genetic resources associated with these two important agronomic traits. Plant MYB family transcription factors play important regulatory roles in diverse biological processes.
View Article and Find Full Text PDFPlant Cell
December 2024
Department of Plant Science, The Pennsylvania State University, University Park, PA 16802, USA.
The basal endosperm transfer layer (BETL) of the maize (Zea mays L.) kernel is composed of transfer cells for nutrient transport to nourish the developing kernel. To understand the spatiotemporal processes required for BETL development, we characterized 2 unstable factor for orange1 (Zmufo1) mutant alleles.
View Article and Find Full Text PDFPlants (Basel)
October 2024
Facultad de Ciencias Naturales, Universidad Nacional de Salta (UNSa), Av. Bolivia 5150, Salta 4400, Argentina.
, the putative wild ancestor of quinoa, is a source of traits that could improve the tolerance of crop quinoa to high temperatures. However, seeds of have physiological dormancy (PD), which is an obstacle for plant propagation and use in breeding programs. We studied the intraspecific variability in morpho-anatomical traits of embryo covering structures and their association with PD.
View Article and Find Full Text PDFFoods
April 2024
Faculty of Agricultural and Food Sciences and Environmental Management, Institute of Nutrition, University of Debrecen, Böszörményi út 138, 4032 Debrecen, Hungary.
The male sterility line is a vital approach in the genetic breeding of sorghum. The husking process affects the grain's nutritional composition, emphasizing the intricate relationship between genetic enhancement and dietary requirements. The current study assessed the influence of the Husking Fraction Time Unit (HFTU) process, which was set at 30 (S) and 80 (S) time units per second (S).
View Article and Find Full Text PDFBiosystems
April 2024
Queensland Alliance for Agriculture and Food Innovation, University of Queensland, Brisbane, QLD4072, Australia.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!