A high Q piezoelectric resonator as a portable VLF transmitter.

Nat Commun

SRI International, 333 Ravenswood Avenue, Menlo Park, CA, 94025-3493, USA.

Published: April 2019

Very low frequency communication systems (3 kHz-30 kHz) enable applications not feasible at higher frequencies. However, the highest radiation efficiency antennas require size at the scale of the wavelength (here, >1 km), making portable transmitters extremely challenging. Facilitating transmitters at the 10 cm scale, we demonstrate an ultra-low loss lithium niobate piezoelectric electric dipole driven at acoustic resonance that radiates with greater than 300x higher efficiency compared to the previous state of the art at a comparable electrical size. A piezoelectric radiating element eliminates the need for large impedance matching networks as it self-resonates at the acoustic wavelength. Temporal modulation of this resonance demonstrates a device bandwidth greater than 83x beyond the conventional Bode-Fano limit, thus increasing the transmitter bitrate while still minimizing losses. These results will open new applications for portable, electrically small antennas.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6461683PMC
http://dx.doi.org/10.1038/s41467-019-09680-2DOI Listing

Publication Analysis

Top Keywords

high piezoelectric
4
piezoelectric resonator
4
resonator portable
4
portable vlf
4
vlf transmitter
4
transmitter low
4
low frequency
4
frequency communication
4
communication systems
4
systems khz-30
4

Similar Publications

All-polymer piezo-ionic-electric electronics.

Nat Commun

December 2024

Key Laboratory of Advanced Technologies of Materials (Ministry of Education), School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, China.

Piezoelectric electronics possess great potential in flexible sensing and energy harvesting applications. However, they suffer from low electromechanical performance in all-organic piezoelectric systems due to the disordered and weakly-polarized interfaces. Here, we demonstrated an all-polymer piezo-ionic-electric electronics with PVDF/Nafion/PVDF (polyvinylidene difluoride) sandwich structure and regularized ion-electron interfaces.

View Article and Find Full Text PDF

Ferroelectric films are highly sought-after in micro-electro-mechanical systems, particularly with the trend towards miniaturization. However, their tendency to depolarize and degradation in piezoelectric properties when exposed to packaging procedures at temperatures exceeding 260 °C remains a significant challenge. Here, we reveal the prerequisites for self-poling and leverage these insights to achieve unprecedented macroscopic performance through a two-step approach involving texture construction and hierarchical heterogeneity engineering.

View Article and Find Full Text PDF

Piezoelectric materials are increasingly used in portable smart electronics and Internet of Things sensors. Among them, piezoelectric macro fiber composites (MFCs) have attracted much attention due to their architectural simplicity, scalability, and high-power density. However, most MFCs currently use toxic lead-based piezoelectric materials, hindering their applications for bio-friendly intelligent electronics.

View Article and Find Full Text PDF

High-Performance Shear Mode Ultrasonic Transducer Operating at Ultrahigh Temperature Fabricated with BiSiO Piezoelectric Crystal.

ACS Appl Mater Interfaces

December 2024

Center for Optics Research and Engineering, State Key Laboratory of Crystal Materials, Shandong University, Qingdao 266237, China.

Shear mode ultrasonic waves are in high demand for structural health monitoring (SHM) applications owing to their nondispersive characteristics, singular mode, and minimal energy loss, especially in harsh environments. However, the generation and detection of a pure shear wave using conventional piezoelectric materials present substantial challenges because of their complex piezoelectric response, involving multiple modes. Herein, we introduce a high-quality piezoelectric crystal BiSiO (BSO), exhibiting a robust piezoelectric response ( = 45.

View Article and Find Full Text PDF

This work presents air-coupled piezoelectric micromachined ultrasonic transducers (pMUTs) with high sound pressure level (SPL) under low-driving voltages by utilizing sputtered potassium sodium niobate KNaNbO (KNN) films. A prototype single KNN pMUT has been tested to show a resonant frequency at 106.3 kHz under 4 V with outstanding characteristics: (1) a large vibration amplitude of 3.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!