QST713 is widely used as a biological control agent for crop protection and disease suppression. This strain is used industrially in France for the protection of against f. , which causes green mold disease. The efficacy of this biocontrol process was evaluated in a previous study, yet the mode of its action has not been explored under production conditions. In order to decipher the underlying biocontrol mechanisms for effective biofilm formation by strain QST713 in the compost and for the involvement of antimicrobial compounds, we developed a simplified micromodel for the culture of during its early culture cycle. By using this micromodel system, we studied the transcriptional response of strain QST713 in the presence or absence of and/or in axenic industrial compost. We report the overexpression of several genes of the biocontrol agent involved in biofilm formation in the compost compared to their expression during growth in broth compost extract either in the exponential growth phase (the , , and genes) or in the stationary growth phase (the gene), while a gene encoding a flagellar protein () was underexpressed. We also report the overexpression of QST713 genes related to surfactin () and fengycin () production in the presence of the fungal pathogen in the compost. Biocontrol agents are increasingly used to replace chemical pesticides to prevent crop diseases. In the button mushroom field in France, the use of QST713 as a biocontrol agent against the green mold has been shown to be efficient. However, the biocontrol mechanisms effective in the // QST713 pathosystem are still unknown. Our paper focuses on the exploration of the bioprotection mechanisms of the biocontrol agent QST713 during culture of the button mushroom () in a micromodel culture system to study the specific response of strain QST713 in the presence of and/or .
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6544832 | PMC |
http://dx.doi.org/10.1128/AEM.00327-19 | DOI Listing |
Cell Mol Biol (Noisy-le-grand)
January 2025
Department of Biotechnology, Faculty of Agriculture, Tarbiat Modares University, Tehran, Iran.
One of the prevailing trends in contemporary agriculture is the application of biological control. Nevertheless, several reports suggest that biocontrol bacteria exhibit poor survival rates in host plants. Consequently, the concept of shielding biological control agents by encapsulating them in outer coatings has gained popularity.
View Article and Find Full Text PDFJ Appl Microbiol
January 2025
Department of Biology and CESAM, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal.
Aims: This study aimed to evaluate the potential of phage phSE-5 to inactivate Salmonella enterica serovar Typhimurium in milk (at 4, 10 and 25°C), liquid whole egg and eggshell (at 25°C for both matrices).
Methods And Results: Since the success of phage treatment in food depends on maintaining phage viability towards different food conditions, firstly the stability of phage phSE-5 at different temperatures and pHs was assessed. The effect of phage phSE-5 against S.
Vet Microbiol
January 2025
Department of Biotechnology and Food Microbiology, Faculty of Biotechnology and Food Sciences, Wrocław University of Environmental and Life Sciences, Poland. Electronic address:
Avian pathogenic Escherichia coli (APEC) is a principal etiologic agent of avian colibacillosis, responsible for significant economic losses in the poultry industry due to high mortality and disease treatment with antibiotics. APEC and its ability to form biofilms on food and processing surfaces contributes to its persistence within farms. Bacteriophages are promising antibacterial agents for combating APEC.
View Article and Find Full Text PDFBraz J Microbiol
January 2025
Virus Bioinformatics Laboratory, Centro de Biotecnologia e Genética, Universidade Estadual de Santa Cruz, Ilhéus, 45662-900, BA, Brazil.
Parasitoid wasps act as natural biological control agents for several harmful insect species. However, there is a lack of information regarding the exogenous RNA viruses that infect parasitoids and may contribute to the success of their parasitism strategies. This study aimed to investigate the presence, abundance, and replication of known exogenous viruses in two parasitoid wasp species and their corresponding preys.
View Article and Find Full Text PDFPest Manag Sci
January 2025
State Key Laboratory of Green Pesticides; Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang, China.
Background: The Japanese giant silkworm (JGS) Caligula japonica is a significant defoliator pest in East Asia, causing severe economic losses in forest and fruit production. To establish a cost-effective biological control program against JGS, the age-stage, two-sex life table method was used to accurately assess the potential efficacy of two Mesocomys species (M. albitarsis and M.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!