Composite reinforcing bars (rebars) that are used in concrete members with high performance (strength and durability) properties could have beneficial effects on the behavior of these members. This is especially vital when a building is constructed in an aggressive environment, for instance a corrosive environment. Although tension capacity/weight (or volume) ratios in composite rebars (carbon fiber reinforced polymer (CFRP), glass fiber reinforced polymer (GFRP), ) are very high when compared to steel rebars, major weaknesses in concrete members reinforced with these composite rebars may be the potential consequences of relatively poor bonding capacity. This may even be more crucial when the member is subjected to cyclic loading. Although monotonic bond tests are available in the literature, only limited experimental studies exist on bond characteristics under cyclic loading conditions. In order to fill this gap and propose preliminary design recommendations, 10 specimens of 10-mm-diameter ribbed CFRP rebars embedded in specially designed high strength concrete (' = 70 MPa) blocks were subjected to monotonic and cyclic pullout tests. The experimental results showed that cyclically loaded CFRP rebars had less bond strength than those companion specimens loaded monotonically.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6432228PMC
http://dx.doi.org/10.3390/polym8060211DOI Listing

Publication Analysis

Top Keywords

monotonic cyclic
8
high strength
8
strength concrete
8
concrete members
8
composite rebars
8
fiber reinforced
8
reinforced polymer
8
cyclic loading
8
cfrp rebars
8
rebars
6

Similar Publications

This study delves into the feasibility of leveraging quasi-static component (QSC) generation during primary Lamb wave propagation to discern subtle alterations in the interfacial properties of a two-layered plate. Unlike the second-harmonic generation of Lamb waves, QSC generation doesn't necessitate precise phase-velocity matching but rather requires an approximate matching of group velocities to ensure the emergence of cumulative growth effects. This unique characteristic empowers the QSC-based nonlinear ultrasonic method to effectively surmount the limitations associated with inherent dispersion and multimode traits of Lamb wave propagation.

View Article and Find Full Text PDF

Incorporating mechanical stretching of cells in tissue culture is crucial for mimicking (patho)-physiological conditions and understanding the mechanobiological responses of cells, which can have significant implications in areas like tissue engineering and regenerative medicine. Despite the growing interest, most available cell-stretching devices are not compatible with automated live-cell imaging, indispensable for characterizing alterations in the dynamics of various important cellular processes. In this work, StretchView is presented, a multi-axial cell-stretching platform compatible with automated, time-resolved live-cell imaging.

View Article and Find Full Text PDF

The reliability of nanocomposite conductive inks under cyclic loading is the key to designing robust flexible electronics. Although resistance increases with cycling and models exist, the exact degradation mechanism is not well understood and is critical for developing inks. This study links cracking behavior to changes in electrical resistance by performing in situ cyclic stretch experiments in scanning electron microscopy (SEM) with synchronized resistance measurements.

View Article and Find Full Text PDF

Investigation of 3D Printed Self-Sensing UHPC Composites Using Graphite and Hybrid Carbon Microfibers.

Sensors (Basel)

November 2024

Department of Civil, Construction, and Environmental Engineering, Iowa State University, Ames, IA 50011, USA.

This paper explores the development of 3D-printed self-sensing Ultra-High Performance Concrete (UHPC) by incorporating graphite (G) powder, milled carbon microfiber (MCMF), and chopped carbon microfiber (CCMF) as additives into the UHPC matrix to enhance piezoresistive properties while maintaining workability for 3D printing. Percolation curves were established to identify optimal filler inclusion levels, and a series of compressive tests, including quasi-static cyclic, dynamic cyclic, and monotonic compressive loading, were conducted to evaluate the piezoresistive and mechanical performance of 29 different mix designs. It was found that incorporating G powder improved the conductivity of the UHPC but decreased compressive strength for both mold-cast and 3D-printed specimens.

View Article and Find Full Text PDF

Clay hypoplasticity coupled with small-strain approaches for complex cyclic loading.

Acta Geotech

November 2023

Ruhr-University Bochum, Germany, Chair of Soil Mechanics, Foundation Engineering and Environmental Geotechnics, Universitätsstraße 150, 44801 Bochum, Germany.

Constitutive models that are able to accurately predict cyclic soil behaviour are crucial for finite element design of offshore foundation or railway embankments. Basic hypoplastic models introduce the history of loading in state variables such as the stress and void ratio and are therefore incapable of describing small-strain stiffness and cyclic loading. In this work, clay hypoplasticity is extended with a modified intergranular strain proposed by Duque et al.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!