We previously reported that the dispersed rubber microparticles in ethylene-propylene-diene monomer (EPDM)/polypropylene (PP) thermoplastic vulcanizates (TPVs) are actually agglomerates of rubber nanoparticles. In this study, based on this new understanding of the microstructure of TPV, we further revealed the microstructure-properties relationship of EPDM/PP TPV during dynamic vulcanization, especially the effect of the size of rubber nanoparticle agglomerates (), the thicknesses of PP ligaments () and the rubber network on the properties of EPDM/PP TPV. We were able to simultaneously obtain a high tensile strength, elongation at break, elastic modulus, and elasticity for the EPDM/PP TPV by the achievement of a smaller , a thinner and a denser rubber network. Interestingly, the effect of and on the elastic modulus of EPDM/PP TPV composed of rubber nanoparticle agglomerates is different from that of EPDM/PP TPVs composed of rubber microparticles reported previously. The deformation behavior of the TPVs during stretching was studied to understand the mechanism for the achievement of good mechanical properties. Interestingly, the rubber nanoparticle agglomerates are oriented along the tensile direction during stretching. The TPV samples with smaller and more numerous rubber nanoparticle agglomerates can slow down the development of voids and cracks more effectively, thus leading to increase in tensile strength and elongation at break of the EPDM/PP TPV.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6432384PMC
http://dx.doi.org/10.3390/polym8040127DOI Listing

Publication Analysis

Top Keywords

rubber nanoparticle
20
epdm/pp tpv
20
nanoparticle agglomerates
16
rubber
10
thermoplastic vulcanizates
8
dynamic vulcanization
8
rubber microparticles
8
rubber network
8
tensile strength
8
strength elongation
8

Similar Publications

Platinum nanoparticles (PtNPs) offer significant promise in cancer therapy by enhancing the therapeutic effects of platinum-based chemotherapies like cisplatin. These nanoparticles improve tumor targeting, reduce off-target effects, and help overcome drug resistance. PtNPs exert their anti-cancer effects primarily through the generation of reactive oxygen species (ROS), which induce oxidative stress and apoptosis in cancer cells.

View Article and Find Full Text PDF

Particle emissions study from tire sample with nano-silver tracer from different steps of its life cycle. A new approach to trace emissions of tire microparticles.

Sci Total Environ

January 2025

Direction Milieux et impacts sur le vivant, Institut National de l'Environnement Industriel et des Risques (INERIS), Verneuil en Halatte, France.

Emissions due to tires retread/repair and incineration are a cause of concern owing to the presence of nanoparticles in the products. The assessment exposure to humans hereto related is a challenge in an environmental context. The first object of this work is to develop a method to characterize the emission sources using online (counting and sizing) and offline measurements.

View Article and Find Full Text PDF

Mitochondria are the seat of cellular energy and play key roles in regulating several cellular processes such as oxidative phosphorylation, respiration, calcium homeostasis and apoptotic pathways. Mitochondrial dysfunction results in error in oxidative phosphorylation, redox imbalance, mitochondrial DNA mutations, and disturbances in mitochondrial dynamics, all of which can lead to several metabolic and degenerative diseases. A plethora of studies have provided evidence for the involvement of mitochondrial dysfunction in the pathogenesis of neurodegenerative diseases such as Parkinson's disease, Alzheimer's disease, Huntington's disease, and amyotrophic lateral sclerosis.

View Article and Find Full Text PDF

Corrosion and degradation of magnesium (Mg) alloy result in serious damage and limit its application in new-energy automobile industry. Considerable protective coating is proposed, yet it is hindered by the difficulties in avoiding and visually monitoring coating micro-damage and localized metal corrosion. Herein, a novel anticorrosion coating system with autonomously monitoring multiple levels of damages in coated Mg-alloy system, is proposed.

View Article and Find Full Text PDF
Article Synopsis
  • This study focuses on improving the dielectric properties and antibacterial activity of natural rubber by adding silver nanoparticles and titanium dioxide.
  • The natural rubber was modified through a chemical process that attached acrylic acid and acrylamide, creating a material that could interact well with silver ions and titanium dioxide.
  • The resulting composites demonstrated better thermal stability, increased stiffness, and enhanced dielectric constant compared to standard natural rubber, along with antibacterial properties in the modified version.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!