The separation of oil from water in emulsions is a great environmental challenge, since oily wastewater is industrially produced. Here, we demonstrate a highly efficient method to separate oil from water in non-stabilized emulsions, using functionalized cellulose fiber networks. This is achieved by the modification of the wetting properties of the fibers, transforming them from oil- and water-absorbing to water-absorbing and oil-proof. In particular, two diverse layers of polymeric coatings, paraffin wax and poly(dimethylsiloxane)--poly(ethylene oxide) (PDMS--PEO) diblock copolymer, are applied on the surface of each individual fiber by a two-step dip adsorption process. The resulting cellulose networks exhibit superhydrophilicity and underwater superoleophobicity and they are mechanically reinforced. Therefore, the described treatment makes cellulose fiber networks excellent candidates for the filtration and subsequent removal of oil from oil-in-water non-stabilized emulsions with oil separation efficiency up to 99%. The good selectivity, reproducibility, and cost effectiveness of the preparation process leads to the production of low cost filters that can be used in oil⁻water separation applications.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6432539 | PMC |
http://dx.doi.org/10.3390/polym8020052 | DOI Listing |
ACS Omega
December 2024
Department of Biological and Physical Sciences, South Carolina State University, Orangeburg, South Carolina 29117, United States.
Food packaging industries generally use petroleum-based packaging materials that are non-biodegradable and harmful to the environment. Eco-friendly polymers such as chitosan (CH), gelatin (GE), and cellulose nanocrystals (CNCs) are leading viable alternatives to plastics traditionally used in packaging because of their higher functionality and biodegradability. In this study, an innovative approach has been disclosed to prepare new packaging materials by utilizing chitosan, gelatin, and cellulose nanocrystals (CNCs) through a simple solution casting method.
View Article and Find Full Text PDFHeliyon
January 2025
Department of Mechanical Engineering, ENSET, University of Douala, P.O. Box: 1872, Douala, Cameroon.
Carica papaya pseudostems are widely available as biomass waste in Cameroon. These agricultural wastes can be effectively used as natural fibers in the manufacture of biocomposites. In this study Carica papaya fibers were extracted from papaya pseudostems by retting with water and an alkaline sodium hydroxide (NaOH) solution at different concentrations (2.
View Article and Find Full Text PDFLab Chip
January 2025
James Watt School of Engineering, Advanced Research Centre (ARC), University of Glasgow, Chapel Lane, Glasgow G11 6EW, UK.
Microbial chemotaxis plays a key role in a diversity of biological and ecological processes. Although microfluidics-based assays have been applied to investigate bacterial chemotaxis, retrieving chemotactic cells off-chip based on their dynamic chemotactic responses remains limited. Here, we present a simple three-dimensional microfluidic platform capable of programmable delivery of solutions, maintaining static, stable gradients for over 20 hours, followed by active sorting and retrieval of bacteria based on their chemotactic phenotypes.
View Article and Find Full Text PDFAdv Mater
January 2025
Life Cycle Thinking Group, Department of Graphic Design and Engineering Projects, Faculty of Engineering in Bilbao. University of the Basque Country (UPV/EHU), Bilbao, 48013, Spain.
Biopolymer based electrolytes can overcome current performance limitations of lithium-ion batteries (LIBs). Biopolymers enable electrolytes with high ionic conductivities and wide electrochemical stability windows. While the biobased character of natural materials is claimed as an inherent advantage in meeting current environmental sustainability challenges, further research is required to quantify and compare their environmental impacts as electrolytes.
View Article and Find Full Text PDFAdv Mater
January 2025
Hangzhou Institute of Technology, Xidian University, Hangzhou, 311231, P. R. China.
Environmentally induced sensor temperature fluctuations can distort the outputs of a sensor, reducing their stability during long-term health monitoring. Here, a passive isothermal flexible sensor is proposed by using hierarchical cellulose aerogel (HCA) as the top tribonegative layer, which allows the sensor to adapt dynamic thermal environments through both radiative cooling and heat insulation. The radiative cooling effect can cool down the temperatures of a sensor in summer, while the hollow microfibers in HCA provide ultralow thermal conductivity to reduce internal heat loss in winter.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!