A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Binding potentials for vapour nanobubbles on surfaces using density functional theory. | LitMetric

Binding potentials for vapour nanobubbles on surfaces using density functional theory.

J Phys Condens Matter

Department of Mathematical Sciences, Loughborough University, Loughborough, LE11 3TU, United Kingdom.

Published: August 2019

We calculate density profiles of a simple model fluid in contact with a planar surface using density functional theory (DFT), in particular for the case where there is a vapour layer intruding between the wall and the bulk liquid. We apply the method of Hughes et al (2015 J. Chem. Phys. 142 074702) to calculate the density profiles for varying (specified) amounts of the vapour adsorbed at the wall. This is equivalent to varying the thickness h of the vapour at the surface. From the resulting sequence of density profiles we calculate the thermodynamic grand potential as h is varied and thereby determine the binding potential as a function of h. The binding potential obtained via this coarse-graining approach allows us to determine the disjoining pressure in the film and also to predict the shape of vapour nano-bubbles on the surface. Our microscopic DFT based approach captures information from length scales much smaller than some commonly used models in continuum mechanics.

Download full-text PDF

Source
http://dx.doi.org/10.1088/1361-648X/ab18e8DOI Listing

Publication Analysis

Top Keywords

density profiles
12
density functional
8
functional theory
8
calculate density
8
binding potential
8
vapour
5
density
5
binding potentials
4
potentials vapour
4
vapour nanobubbles
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!