This study aimed at studying the biomethanation process using a 100 L pilot-scale digester equipped with a dense membrane for hydrogen injection. Hydrogen mass transfer was characterized and the impact of hydrogen flowrate, agitation rate and of the co-injection of CO, on biogas production and composition, was precisely studied. A linear relationship between H flowrate and the CO and CH rates in biogas was found but no impact on biogas flowrate was shown. It was also noticed that, without exogenous CO injection, and for high H injection flowrates, residual H could be found at the digester outlet due to local CO limitation. Thus, this study suggested that biogas production in biomethanation process at the pilot scale was probably rather limited by the dissolved CO transport within the liquid phase than by the hydrogen mass transfer itself.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.biortech.2019.03.140 | DOI Listing |
Polymers (Basel)
January 2025
Faculty of Textile Technology, University of Zagreb, Prilaz baruna Filipovića 28 a, 10000 Zagreb, Croatia.
This research follows the principles of circular economy through the zero waste concept and cascade approach performed in two steps. Our paper focuses on the first step and explores the characteristics of developed biocomposite materials made from a biodegradable poly(lactic acid) polymer (PLA) reinforced with natural fibers isolated from the second generation of biomass (agricultural biomass and weeds). Two plants, L.
View Article and Find Full Text PDFJ Environ Manage
January 2025
Thermochemical Conversion of Biomass Research Group, Department of Green Chemistry & Technology, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, B-9000, Gent, Belgium.
Modern poultry production is faced with the challenge of properly managing its associated wastes, in particular chicken manure (CM). There is a need to improve the management of CM through conversion processes that allow the production of value-added products, particularly for energy purposes, such as hydrothermal carbonization (HTC) and anaerobic digestion (AD). The objectives of this study were: i) to optimize the CM-HTC, using response surface methodology with simultaneous optimization of mass yield and higher heating value (HHV), and ii) to evaluate the biomethane potential of the process water generated from hydrochar production under the optimized condition.
View Article and Find Full Text PDFBioresour Technol
January 2025
INSA Lyon, DEEP, UR7429 69621 Villeurbanne Cedex, France.
Biomethane production from biological methanation of CO is promising both for biogas upgrading and surplus renewable energy storage. One of the questions for process upscaling is the impact of oxygen (in the biogas or in the purified CO-rich off-gas) on the biological process. An adapted anaerobic thermophilic consortium was submitted to increasing amounts of oxygen in batch and continuous tests at partial pressures ranging from 0 to 50 mbar.
View Article and Find Full Text PDFChemosphere
January 2025
DICAR University of Pavia, Pavia, 27100, Italy. Electronic address:
Excess biological sludge processing and disposal have a significant impact on the energy balance and economics of wastewater treatment operations, and on receiving environments. Anaerobic digestion is probably the most widespread in-plant sludge processing method globally, since it stabilizes and converts biosolids organic matter into biogas, allowing partial recovery of their embedded chemical energy. A considerable number of studies concerning applicable techniques to improve biogas production, both in quantity and quality, include pre-treatment strategies to promote biosolids disintegration aimed at the release and solubilization of intracellular energy compounds, inorganic/biological amendments aimed at improving process performance, and sludge thermal pre-treatment.
View Article and Find Full Text PDFPrep Biochem Biotechnol
January 2025
Centro Universitario Municipal de Taguasco "Enrique José Varona", Universidad de Sancti Spíritus "José Martí Pérez", Sancti Spíritus, Cuba.
The biomethanization of lignocellulosic wastes remains an inefficient and complex process due to lignin structures that hinder the hydrolysis step, therefore, some treatments are required. This work describes the addition of an enriched microbial consortium in the biomethanization of rice straw. The experiment was carried out in lab batch reactors following two strategies: (i) pretreatment of rice straw for 48 h using the enriched microbial consortium (dilution 1:100), and (ii) addition of this enriched microbial consortium (dilution 1:100) directly to the anaerobic reactors (bioaugmentation).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!