Enhanced production of 3-hydroxypropionic acid from glucose and xylose by alleviation of metabolic congestion due to glycerol flux in engineered Escherichia coli.

Bioresour Technol

Department of Agricultural Biotechnology and Center for Food and Bioconvergence, Seoul National University, Seoul 08826, Republic of Korea; Interdisciplinary Program of Bioengineering, Seoul National University, Seoul 08826, Republic of Korea. Electronic address:

Published: August 2019

AI Article Synopsis

  • 3-hydroxypropionic acid (3-HP) is a valuable platform chemical derived from renewable biomass, showing potential for sustainable production.
  • A study using GC/TOF-MS highlighted that a modified E. coli strain (JHS01302) produced higher levels of 3-HP and lower glycerol during co-fermentation of glucose and xylose due to alterations in metabolite levels.
  • The engineered strain JHS01304, which replaced the yeast GPD1 gene with the endogenous gpsA gene, led to 43% less glycerol accumulation and a significant increase in 3-HP production, achieving 37.6 g/L 3-HP in fed-batch fermentation.

Article Abstract

Among platform chemicals obtained from renewable biomass, 3-hydroxypropionic acid (3-HP) has attracted considerable attention. A GC/TOF-MS study revealed that the intracellular metabolites of the TCA cycle and fatty acid synthesis increased in JHS01302, a galP-overexpressing strain of Escherichia coli, during glucose and xylose co-fermentation. Decreased intracellular glycerol levels and increased intracellular biosynthesis of 3-HP were also detected in the strain. Based on these results, the yeast GPD1 gene was replaced with the endogenous gpsA gene to modulate the rate of glycerol metabolism. In flask cultures, JHS01304 containing the gpsA gene displayed 43% lower glycerol accumulation and 52% higher 3-HP production than the control. JHS01304 produced 37.6 g/L 3-HP with a productivity rate of 0.63 g/L/h and yield of 0.17 g/g in the fed-batch fermentation. The metabolome analysis provided valuable information for alleviating the metabolic burden of glycerol flux to improve the production of 3-HP during glucose and xylose co-fermentation.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.biortech.2019.121320DOI Listing

Publication Analysis

Top Keywords

glucose xylose
12
3-hydroxypropionic acid
8
glycerol flux
8
escherichia coli
8
xylose co-fermentation
8
gpsa gene
8
glycerol
5
3-hp
5
enhanced production
4
production 3-hydroxypropionic
4

Similar Publications

Polysaccharides from maggot extracts suppress colorectal cancer progression by inducing ferroptosis via HMOX1/GPX4 signaling pathway.

Int J Biol Macromol

January 2025

the Affiliated Cancer Hospital of Nanjing Medical University and Jiangsu Cancer Hospital and Jiangsu Institute of Cancer Research, Nanjing 210009, China; Jiangsu Key Laboratory of Molecular and Translational Cancer Research, 42 Baiziting Road, Xuanwu District, Nanjing 210009, China. Electronic address:

Maggots contain various kinds of polysaccharides and recent studies mostly concentrated on their anti-inflammatory functions. While the molecule mechanisms related to the polysaccharides inhibiting carcinogenesis remains unclear. Here we characterized the polysaccharides extracted from maggot (MEs) determining their anti-colon cancer potentials.

View Article and Find Full Text PDF

The development of plant-based meat substitutes is imperative for reducing animal fat intake and promoting dietary diversification. However, the flavor profiles of these products frequently fall short of consumer expectations. This study sought to optimize the production process of meat flavorings for plant-based products using the Taguchi method.

View Article and Find Full Text PDF

This study aims to explore the effect of pulsed electric field (PEF) treatment as a method very likely to result in reversible electroporation of Georgi underground organs, resulting in increased mass transfer and secondary metabolites leakage. PEF treatment with previously established empirically tailored parameters [E = 0.3 kV/cm (U = 3 kV, d = 10 cm), t = 50 µs, N = 33 f = 1 Hz] was applied 1-3 times to roots submerged in four different Natural Deep Eutectic Solvents (NADES) media (1-choline chloride/xylose (1:2) + 30% water, 2-choline chloride/glucose (1:2) + 30% water, 3-choline chloride/ethylene glycol (1:2), and 4-tap water (EC = 0.

View Article and Find Full Text PDF

In this study, we fully sequenced and analyzed the genome of strain 12219 and identified it as Streptomyces thermocarboxydus. The genome contained a single linear chromosome, 6,950,031 bp in size, with a GC content of 72.21 %.

View Article and Find Full Text PDF

Cirsii Herba glycoprotein promotes macrophage M1 polarization through MAPK and NF-κB signaling pathways via interaction with TLR4.

Int J Biol Macromol

January 2025

MOA Key Laboratory of Animal Virology, Center for Veterinary Sciences, Department of Veterinary Medicine, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China. Electronic address:

The present study aimed to extract and purify the glycoprotein from Cirsii Herba (CHPs), and investigate its immunomodulatory activity and molecular mechanism in RAW264.7 macrophages. The results showed that CHPs contained 14.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!