Several studies indicate that human exposure to plasticizers via dermal pathway is not negligible, but the dermal bioaccessibility of phthalates and alternative plasticizers from the important environmental matrix including indoor dust and clothing and the importance weight of dermal exposure to those pollutants have been poorly studied. An in vitro physiologically based extraction test was employed to investigate the dermal bioaccessibility of target phthalates and alternative plasticizers from indoor dust and clothing. Temperature, incubation time, sweat/sebum ratio and solid/liquid ratio were selected to study their effects on the bioaccessibility. The bioaccessibility of Diethyl phthalates (DEP), dibutyl phthalate (DBP), bis-2-ethylhexyl phthalate (DEHP), Acetyl tributyl citrate (ATBC), bis-2-ethylhexyladipate (DEHA) and bis-2-ethylhexyl terephthalate (DEHT) in indoor dust were 66.20 ± 1.93%, 94.27 ± 1.31%, 80.37 ± 8.09%, 75.02 ± 2.12%, 94.50 ± 3.42% and 74.09 ± 3.79%, respectively, under the condition of 1:1 sweat/sebum ratio, 1/100 solid/liquid ratio (indoor dust), 1:1 area/area ratio (1:1, clothing) and 90 min incubation time at 36.3 °C which are chosen based on the experimental results and human physical conditions. DBP showed the highest bioaccessibility in all samples. The time course of the plasticizer release was fitted to a first-order one-compartment model. DBP showed the highest release rate (k) calculated from the model, which was consistent with the bioaccessibility result. Risk assessment indicated that dermal exposure of DBP was an important exposure route, accounting for about 21.58% of total intake, and indoor dust was an important exposure media when considering the dermal bioaccessibility.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.scitotenv.2019.04.028 | DOI Listing |
Sci Rep
January 2025
Sustainability Solutions Research Lab, Faculty of Engineering, University of Pannonia, Egyetem Str. 10, Veszprém H, 8200, Veszprém, Hungary.
This study endeavors to tackle the energy requirements of the building sector by employing passive design strategies. However, there exists a dearth of comprehension regarding the energy efficiency performance of foamed alkali-activated materials. To bridge this research gap, the study proposes a solution in the form of a thermally proficient wall material crafted from ceramic tile dust (CTD), class C fly ash (FA), and Ground Granulated Blast-Furnace Slag (GGBS), all of which are industrial by-products.
View Article and Find Full Text PDFSci Total Environ
January 2025
Department of Civil Engineering, Aalto University, 00076 Espoo, Finland; International Laboratory for Air Quality and Health, Faculty of Science, School of Earth & Atmospheric Sciences, Queensland University of Technology, 2 George Street, Brisbane, QLD 4000, Australia. Electronic address:
Genus Stachybotrys (Stachybotryaceae, Hypocreales) requires high humidity to grow and represents one of the most notorious fungi associated with suspected illness in moist buildings. If Stachybotrys conidia are found in settled indoor dusts, their presence may indicate water intrusion and mold infestation revealed after dismantling the building structures. This study describes detection of Stachybotrys growth hidden inside the structures of three buildings in Finland.
View Article and Find Full Text PDFActa Parasitol
January 2025
Research Center for Hydatid Disease in Iran, Institute of Infectious Diseases and Tropical Medicine, Afzalipour School of Medicine, Kerman University of Medical Sciences, Kerman, Iran.
Objective: Different Acanthamoeba species are among the most ubiquitous organisms causing serious diseases in humans including central nervous system (CNS) and eye infections. Contact lenses, lens care solutions and the hospital environments particularly the indoor and outdoor environments of ophthalmology wards where people are present with different types of eye diseases, are the potential sources of human infection. The purpose of the present study was the molecular investigation of free-living amoebae in the used contact lenses, lens care solutions and hospital samples from the ophthalmology wards and operating rooms in a referral hospital in southeastern Iran.
View Article and Find Full Text PDFMicroorganisms
December 2024
Department of Environmental Science, University of Arizona, Tucson, AZ 85719, USA.
Resuspended particles from human activities can contribute to pathogen exposure via airborne fomite contamination in built environments. Studies investigating the dissemination of resuspended viruses are limited. The goal of this study was to explore viral dissemination after aerosolized resuspension via human activities on indoor flooring.
View Article and Find Full Text PDFPathogens
November 2024
National Public Health and Pharmaceutical Centre, 1097 Budapest, Hungary.
The quality of indoor air is dependent on a number of factors, including the presence of microorganisms that colonize the building materials. The potential for health risks associated with microbial contamination is a significant concern during the renovation of buildings. The aim of this study was to assess the impact of two reconstruction methods for historic buildings on air quality.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!