Autophagy has been reported to play protective and pathogenetic roles in cerebral ischemia/reperfusion (I/R)-induced neuronal injury. Our previous studies have shown that TP53-induced glycolysis and apoptosis regulator (TIGAR) ameliorates I/R-induced brain injury and reduces anti-cancer drug-induced autophagy activation. However, if TIGAR plays a regulatory role on autophagy in cerebral I/R injury is still unclear. The purpose of the present study is to investigate the role of TIGAR on I/R-induced autophagy activation and ischemic neuronal injury in vivo and in vitro stroke models using TIGAR-transgenic (tg-TIGAR) mice and TIGAR-knockout (ko-TIGAR) mice. The present study confirmed that autophagy was activated after I/R. Overexpression of TIGAR in tg-TIGAR mice significantly reduced I/R-induced autophagy activation and alleviated brain damage, while knockout of TIGAR in ko-TIGAR mice enhanced I/R-induced autophagy activation and exacerbated brain injury in vivo and in vitro. The different activity of autophagy in tg-TIGAR and ko-TIGAR primary neurons after OGD/R were largely reversed by knockdown or re-expression of TIGAR in these neurons. The autophagy inhibitor 3-methyladenine (3-MA) partly prevented exacerbation of brain damage induced by ko-TIGAR, whereas the autophagy inducer rapamycin partially abolished the neuroprotective effect of tg-TIGAR. Knockout of TIGAR reduced the levels of phosphorylated mTOR and S6KP70, which were blocked by 3-MA and NADPH after I/R and OGD/R in vivo and in vitro, respectively. Overexpression of TIGAR increased the levels of phosphorylated mTOR and S6KP70 under OGD/R condition, this enhancement effect was suppressed by rapamycin. In conclusion, our current data suggest that TIGAR protected against neuronal injury partly through inhibiting autophagy by regulating the mTOR-S6KP70 signaling pathway.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.freeradbiomed.2019.04.002 | DOI Listing |
Pharm Biol
December 2025
The Affiliated Hospital, Changchun University of Chinese Medicine, Changchun, China.
Context: The decline in ovarian reserve is a major concern in female reproductive health, often associated with oxidative stress and mitochondrial dysfunction. Although ginsenoside Rg1 is known to modulate mitophagy, its effectiveness in mitigating ovarian reserve decline remains unclear.
Objective: To investigate the role of ginsenoside Rg1 in promoting mitophagy to preserve ovarian reserve.
Pharmaceutics
January 2025
Department of Pharmacy, "Federico II" University of Naples, 80131 Naples, Italy.
Arginase (ARG) is a binuclear manganese-containing metalloenzyme that can convert L-arginine to L-ornithine and urea and plays a key role in the urea cycle. It also mediates different cellular functions and processes such as proliferation, senescence, apoptosis, autophagy, and inflammatory responses in various cell types. In mammals, there are two isoenzymes, ARG-1 and ARG-2; they are functionally similar, but their coding genes, tissue distribution, subcellular localization, and molecular regulation are distinct.
View Article and Find Full Text PDFPharmaceutics
January 2025
State Key Laboratory for Macromolecule Drugs and Large-Scale Manufacturing, College of Pharmacy, Wenzhou Medical University, Wenzhou 325035, China.
Tanshinone IIA (Tan IIA) is a lipophilic active constituent derived from the rhizomes and roots of (Danshen), a common Chinese medicinal herb. However, clinical applications of Tan IIA are limited due to its poor solubility in water. : To overcome this limitation, we developed a calcium alginate hydrogel (CA) as a hydrophilic carrier for Tan IIA, which significantly improved its solubility.
View Article and Find Full Text PDFNutrients
January 2025
Department of Biochemistry and Molecular Biology, School of Basic Medicine, Qingdao University, 308 Ningxia Road, Qingdao 266071, China.
A fucoidan oligosaccharide (FOS), a potent compound derived from algae, is known for its diverse biological activities, including prebiotic activity, anticancer activity, and antioxidative properties, and has demonstrated supportive therapeutic effects in treating kidney ailments. This study was conducted to explore the protective influence of FOS on kidney damage due to aging induced by D-galactose in Sprague Dawley (SD) rats. The low-dose FOS group was administered FOS (100 mg/kg) by gavage, and the high-FOS group received FOS (200 mg/kg) by gavage.
View Article and Find Full Text PDFPharmaceuticals (Basel)
January 2025
Department of Clinical Pharmacology, Faculty of Medicine, Ain Shams University, Cairo 11566, Egypt.
[...
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!