The groundwater level is the main factor affecting the distribution of soil salinity and vegetation in the Yellow River Delta (YRD), China, but the response relationship between the spatial distribution of soil salt ions and the groundwater level in the soil-Tamarix chinensis system remains unclear. In order to investigate the patterns of soil salt ions responding to groundwater levels, in the 'groundwater-soil-T. chinensis' system. Soil columns planted with T. chinensis, a constructive species in the YRD, were taken as the study object, and six groundwater levels (0.3, 0.6, 0.9, 1.2, 1.5 and 1.8 m) were simulated under saline mineralization. The results demonstrated the following: As affected by groundwater, Na+ and Cl- were the main ions in the T. chinensis-planted soil column, with a trend of decreasing first and then increasing by the increase of soil depth. However, the contents of K+ and NO3- gradually decreased and CO32-+HCO3- gradually increased. As affected by groundwater evaporation, all the salt ions except CO32-+HCO3- exhibited different degrees of surface aggregation in the 0-20 cm layer. However, due to the impact of root uptake, the contents of the salt ions rapidly decreased in the root distribution layer (20-50 cm soil layer), which rendered a turning-point layer that was significantly lower than the surface soil layer; such decreases in ion contents showed a relatively large rate of variation. In the whole T. chinensis-planted soil column, with increasing groundwater level, the contents of Na+, Cl-, Ca2+, Mg2+, and NO3- all tended to first decrease, then increase and decrease again, but the content of CO32-+HCO3- first decreased and then increased. Therefore, the 0.9 m groundwater level was the turning point at which the main salt ions underwent significant changes. The contents of Na+, Cl-, Ca2+ and Mg2+ in the T. chinensis planted soil column exhibited moderate variability (14.46%
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6461264 | PMC |
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0215138 | PLOS |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!