Quantum Control and Sensing of Nuclear Spins by Electron Spins under Power Limitations.

Phys Rev Lett

Racah Institute of Physics, The Hebrew University of Jerusalem, Jerusalem 91904, Givat Ram, Israel.

Published: March 2019

State of the art quantum sensing experiments targeting frequency measurements or frequency addressing of nuclear spins require one to drive the probe system at the targeted frequency. In addition, there is a substantial advantage to performing these experiments in the regime of high magnetic fields, in which the Larmor frequency of the measured spins is large. In this scenario we are confronted with a natural challenge of controlling a target system with a very high frequency when the probe system cannot be set to resonance with the target frequency. In this contribution we present a set of protocols that are capable of confronting this challenge, even at large frequency mismatches between the probe system and the target system, both for polarization and for quantum sensing.

Download full-text PDF

Source
http://dx.doi.org/10.1103/PhysRevLett.122.120403DOI Listing

Publication Analysis

Top Keywords

probe system
12
nuclear spins
8
quantum sensing
8
target system
8
frequency
7
system
5
quantum control
4
control sensing
4
sensing nuclear
4
spins
4

Similar Publications

Low Temperature Emissive Cyclometalated Cobalt(III) Complexes.

Inorg Chem

January 2025

Institute for Inorganic Chemistry and Center for Sustainable Systems Design (CSSD), Paderborn University, Paderborn 33098, Germany.

A series of Co complexes [Co(ImP)][PF], with HImP = 1,1'-(1,3-phenylene)bis(3-methyl-1-imidazole-2-ylidene)) and R = Me, Et, Pr, Bu, is presented in this work. The influence of the strong donor ligand on the ground and excited-state photophysical properties was investigated in the context of different alkyl substituents at the imidazole nitrogen. X-ray diffraction revealed no significant alterations of the structures and all differences in the series emerge from the electronic structures.

View Article and Find Full Text PDF

This work describes the design and implementation of optics for EXCLAIM, the EXperiment for Cryogenic Large-Aperture Intensity Mapping. EXCLAIM is a balloon-borne telescope that will measure integrated line emission from carbon monoxide at redshifts z < 1 and ionized carbon ([CII]) at redshifts z = 2.5 - 3.

View Article and Find Full Text PDF

Fungi play a crucial role in aquatic leaf litter decomposition. Aquatic fungi have long been thought to spend the majority of their lives in the water. Here, we explore the possibility of an amphibious life cycle, where phyllosphere fungi spend part of their life cycle in aquatic systems.

View Article and Find Full Text PDF

Cardiovascular and respiratory alterations during anesthesia are of major concern in canines. Thus, it is essential to understand the potential depressant effects of anesthetic drugs on cardio-vascular system; so that, anesthetic procedures are conducted in the best possible way. The objective of the study was to assess and compare the echocardiographic indices during dex-medetomidine and midazolam anesthesia in dogs undergoing elective ovariohysterectomy.

View Article and Find Full Text PDF

Molecular recognition and detection of small bioactive molecules, like neurotransmitters, remain a challenge for chemists, whereas nature found an elegant solution in form of protein receptors. Here, we introduce a concept of a dynamic artificial receptor that synergically combines molecular recognition with dynamic imine bond formation inside a lipid nanoreactor, inducing a fluorescence response. The designed supramolecular system combines a lipophilic recognition ligand derived from a boronic acid, a fluorescent aldehyde based on push-pull styryl pyridine and a phenol-based catalyst.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!