We report three-dimensional (3D) cooling of a levitated nanoparticle inside an optical cavity. The cooling mechanism is provided by cavity-enhanced coherent scattering off an optical tweezer. The observed 3D dynamics and cooling rates are as theoretically expected from the presence of both linear and quadratic terms in the interaction between the particle motion and the cavity field. By achieving nanometer-level control over the particle location we optimize the position-dependent coupling and demonstrate axial cooling by two orders of magnitude at background pressures of 6×10^{-2} mbar. We also estimate a significant (>40 dB) suppression of laser phase noise heating, which is a specific feature of the coherent scattering scheme. The observed performance implies that quantum ground state cavity cooling of levitated nanoparticles can be achieved for background pressures below 1×10^{-7} mbar.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1103/PhysRevLett.122.123602 | DOI Listing |
J Prosthodont Res
January 2025
Advanced Prosthodontics, Oral Health Sciences, Graduate School of Medical and Dental Sciences, Institute of Science Tokyo, Tokyo, Japan.
Purpose: This study was aimed at investigating the thermal stresses in monolithic zirconia crowns (MZC) of various thicknesses and elucidating their thermal behavior under cooling or heating changes in the oral cavity. Additionally, the clinical availability and potential issues of MZC were examined by comparing them with other crown materials.
Methods: Finite element models comprising MZC (0.
Rev Sci Instrum
January 2025
OzGrav-ANU, ARC Centre for Gravitational Astrophysics, College of Science, The Australian National University, Canberra ACT2601, Australia.
We present the design and commissioning of a cryogenic low-vibration test facility that measures displacement noise from a gram-scale silicon cantilever at the level of 10-16m/Hz at 1 kHz. This sensitivity is necessary for future tests of thermal noise models on cross sections of silicon suspension samples proposed for future gravitational-wave detectors. A volume of ∼36 l is enclosed by radiation shields cooling an optical test cavity that is suspended from a multi-stage pendulum chain providing isolation from acoustic and environmental noise.
View Article and Find Full Text PDFNanoscale
January 2025
Department of Chemistry, Faculty of Science, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan.
We report photodissociation processes and spectral measurements upon photoabsorption of size-selected cationic silver clusters, Ag, stored in an ion trap. The experiment shows that small clusters ( ≲ 15) dissociate upon one-photon absorption, whereas larger ones require multiple photons up to five in the present study. The emergence of multi-photon processes is attributed to collisional cooling in the presence of a buffer helium gas in the trap, which competes with size-dependent dissociation rates.
View Article and Find Full Text PDFCureus
November 2024
Cardiovascular Surgery, Sapporo Medical University, Sapporo, JPN.
The patient an 85-year-old female resided in a care facility where she maintained an independent daily activity level. She was discovered hunched over a table in her room, displaying reduced responsiveness and prompting an emergency call. Initially, her blood pressure was within 60 mmHg, and she was transported by ambulance to our hospital.
View Article and Find Full Text PDFScience
December 2024
Institute of Physics, Swiss Federal Institute of Technology Lausanne (EPFL), Lausanne, Switzerland.
Collective phenomena arise from interactions within complex systems, leading to behaviors absent in individual components. Observing quantum collective phenomena with macroscopic mechanical oscillators has been impeded by the stringent requirement that oscillators be identical. We demonstrate the quantum regime for collective motion of = 6 mechanical oscillators, a hexamer, in a superconducting circuit optomechanical platform.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!