A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Derived esterase activity in Drosophila sechellia contributes to evolved octanoic acid resistance. | LitMetric

Derived esterase activity in Drosophila sechellia contributes to evolved octanoic acid resistance.

Insect Mol Biol

Department of Biology, Wesleyan University, Middletown, CT, USA.

Published: December 2019

The dietary specialist fruit fly Drosophila sechellia has evolved resistance to the secondary defence compounds produced by the fruit of its host plant, Morinda citrifolia. The primary chemicals that contribute to lethality of M. citrifolia are the medium-chain fatty acids octanoic acid (OA) and hexanoic acid. At least five genomic regions contribute to this adaptation in D. sechellia and whereas the fine-mapped major effect locus for OA resistance on chromosome 3R has been thoroughly analysed, the remaining four genomic regions that contribute to toxin resistance remain uncharacterized. To begin to identify the genetic basis of toxin resistance in this species, we removed the function of well-known detoxification gene families to determine whether they contribute to toxin resistance. Previous work found that evolution of cytochrome P450 enzymatic activity or expression is not responsible for the OA resistance in D. sechellia. Here, we tested the role of the two other major detoxification gene families in resistance to Morinda fruit toxins - glutathione-S-transferases and esterases - through the use of the pesticide synergists diethyl maleate and tribufos that inhibit the function of these gene families. This work suggests that one or more esterase(s) contribute to evolved OA resistance in D. sechellia.

Download full-text PDF

Source
http://dx.doi.org/10.1111/imb.12587DOI Listing

Publication Analysis

Top Keywords

toxin resistance
12
gene families
12
resistance
9
drosophila sechellia
8
octanoic acid
8
evolved resistance
8
genomic regions
8
regions contribute
8
contribute toxin
8
detoxification gene
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!