Oxygen vacancies (Vö) play a crucial role in energy storage materials. Oxygen-vacancy-enriched vanadium pentoxide/poly(3,4-ethylenedioxythiophene) (Vö-VO/PEDOT) nanocables were prepared through the one-pot oxidative polymerization of PEDOT. PEDOT is used to create tunable concentrations of Vö in the surface layer of VO, which has been confirmed by X-ray absorption near edge structure (XANES) analysis and X-ray photoelectron spectroscopy (XPS) measurements. Applied as electrode materials for supercapacitors, the electrochemical performance of Vö-VO/PEDOT is improved by the synergistic effects of Vö in VO cores and PEDOT shells with rapid charge transfer and fast Na ion diffusion; however, it is compromised subsequently by excessive Vö in consuming more V cations for Faradic reactions. Consequently, the specific capacitance and the energy density of Vö-VO/PEDOT nanocables are significantly enhanced when the overall concentration of Vö is 1.3%. The migration of Vö renders an increased capacitance (105% retention) after 10 000 cycles, which is verified and corroborated with density functional theory simulations and XANES analysis. This work provides an illumination for the fabrication of high-performance electrode materials in the energy storage field through Vö.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acsami.9b03830 | DOI Listing |
J Mol Model
January 2025
State Key Laboratory of Polyolefins and Catalysis, Shanghai, 200062, People's Republic of China.
Context: This study aims to reveal the reaction mechanisms of H and O on the NiO(100) and Ce-doped NiO(100) surfaces using the density functional theory (DFT) combined with the on-site Coulomb correction (DFT + U) method. It was found that H and O react favorably on the reduced surfaces of both materials. However, after the oxygen vacancy is filled, the activation energy for the reaction between H₂ and lattice oxygen increases.
View Article and Find Full Text PDFInorg Chem
January 2025
School of Materials Science and Engineering, Shaanxi Key Laboratory of Green Preparation and Functionalization for Inorganic Materials, Shaanxi University of Science & Technology, Xi'an 710021, Shaanxi, China.
Photocatalytic reactive oxygen species (ROS) evolution with BiOI still suffers from sluggish charge carrier dynamics and limited light absorption. Herein, abundant oxygen vacancies (OVs) were introduced into the microflower-like BiOI, and its ROS generation toward organic dye degradation under the synergistic effect of visible light and ultrasound irradiation was investigated. Benefiting from the broadened visible-light absorption range, stronger piezoresponse, and higher carrier transport efficiency in OV-enriched BiOI (2-PEG-BiOI), both its photocatalytic and piezocatalytic degradations were improved.
View Article and Find Full Text PDFJ Am Chem Soc
January 2025
Research Center for Solar Energy Chemistry and Division of Chemical Engineering, Graduate School of Engineering Science, Osaka University, Toyonaka 560-8531, Japan.
Photocatalytic transformation of nitrate (NO) in wastewater into ammonia (NH) is a challenge in the detoxification and recycling of limited nitrogen resources. In particular, previously reported photocatalysts cannot promote the reaction using water as an electron donor. Herein, we report that copper-doped titanium dioxide (Cu-TiO) powders, prepared via the sol-gel method and subsequent calcination, promote NO-to-NH reduction in water.
View Article and Find Full Text PDFSmall
January 2025
College of Materials Science and Engineering, Sichuan University, Chengdu, 610065, P. R. China.
Nickel hydroxide (Ni(OH)) is considered to be one of the most promising electrocatalysts for urea oxidation reaction (UOR) under alkaline conditions due to its flexible structure, wide composition and abundant 3D electrons. However, its slow electrochemical reaction rate, high affinity for the reaction intermediate *COOH, easy exposure to low exponential crystal faces and limited metal active sites that seriously hinder the further improvement of UOR activities. Herein it is reported electrocatalyst composed of rich oxygen-vacancy (O) defects with amorphous SeO-covered Ni(OH) (O-SeO/Ni(OH)).
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
Department of Chemistry, Amrita School of Physical Sciences, Coimbatore, Amrita Vishwa Vidyapeetham, 641112, India; Functional Materials Laboratory, Amrita School of Engineering, Coimbatore, Amrita Vishwa Vidyapeetham, 641112, India. Electronic address:
The effectiveness and safety of nanomaterials (NMs) are essential for their use in healthcare. This study focuses on creating NPs with multifunctional antibacterial and anticancer properties to combat bacterial infections and cancer disease more effectively than traditional antibiotics. This study investigates the synthesis of ZrO and chitosan (ch) coated zirconium oxide nanoparticles (chZrO NPs) using Bougainvillea glabra (B.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!