A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Multiphysical Digital Coding Metamaterials for Independent Control of Broadband Electromagnetic and Acoustic Waves with a Large Variety of Functions. | LitMetric

Fabricating materials with customized characteristics for both electromagnetic (EM) and acoustic waves remain a significant challenge using the current technology, since the demand of multiphysical manipulation requires a variety of material parameters that are hard to satisfy in nature. However, the emergence of artificially structured materials provides a new degree of freedom to tailor the wave-matter interactions in dual physical domains at the subwavelength scale. Here, a bifunctional digital coding metamaterial (MM) is proposed to engineer the propagation behaviors of EM and acoustic waves simultaneously and independently. Four kinds of rigid pillars with various material properties are employed to serve as 1-bit reflection-type digital meta-atoms with antiphase responses in both frequency spectra, thus offering the opportunities for independent field control as desired. The MM demonstrates excellent performance of scattering manipulations from 5700 to 8000 Hz in the acoustic region and 5.80-6.15 GHz in the microwave region. The bifunctional MM is verified through full-wave simulations and experimental measurements with good agreement, which stands out as a powerful tool for related applications in the future.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acsami.9b02490DOI Listing

Publication Analysis

Top Keywords

acoustic waves
12
digital coding
8
electromagnetic acoustic
8
multiphysical digital
4
coding metamaterials
4
metamaterials independent
4
independent control
4
control broadband
4
broadband electromagnetic
4
acoustic
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!