Dissociative electron attachment to HNO and its hydrates: energy-selective electron-induced chemistry.

Phys Chem Chem Phys

Lehrstuhl für Physikalische Chemie, Fakultät für Chemie und Zentralinstitut für Katalyseforschung, Technische Universität München, Lichtenbergstraße 4, 85748 Garching, Germany.

Published: April 2019

We probe the negative ion production upon the interaction of free electrons with gas-phase HNO3 and its mixed clusters with water. The electron-induced chemistry changes strongly with clustering, exhibiting significant electron energy dependence. For HNO3 hydrates, we identified three involved energy ranges with different behavior: low energies up to about 3.5 eV, an intermediate energy range around 6 eV, and a high energy range, approximately above 9 eV. The major difference is the degree to which the major gas-phase product, NO2-, is converted to NO3-. The latter is the dominant stratospheric anion. Its appearance due to the electron interaction with mixed HNO3/water ice particles thus strongly depends on the electron energy. We discuss the elementary processes and reaction pathways behind the anion conversion.

Download full-text PDF

Source
http://dx.doi.org/10.1039/c9cp00990fDOI Listing

Publication Analysis

Top Keywords

electron-induced chemistry
8
electron energy
8
energy range
8
energy
5
dissociative electron
4
electron attachment
4
attachment hno
4
hno hydrates
4
hydrates energy-selective
4
energy-selective electron-induced
4

Similar Publications

We report the synthesis and characterization of new, user-friendly gold(I) [Au(μ-(NH)CCF)] coordination polymer and [AuCl(NH(NH=)CCF)] complex. These compounds were investigated for potential application as precursors in chemical vapor deposition (CVD) and focused electron/ion beam-induced deposition (FEBID/FIBID), which are additive methods to produce nanomaterials. Single-crystal X-ray diffraction, elemental analysis, and infrared spectroscopy were used to determine the complexes' composition and structure.

View Article and Find Full Text PDF

Plasma treatment of per- and polyfluoroalkyl substances (PFAS) contaminated water is a potentially energy efficient remediation method. In this treatment, an atmospheric pressure plasma interacts with surface-resident PFAS molecules. Developing a reaction mechanism and modeling of plasma-PFAS interactions requires fundamental data for electron-molecule reactions.

View Article and Find Full Text PDF

Semiconducting transition metal dichalcogenide (TMD) nanosheets are promising materials for electrocatalysis and photoelectrocatalysis. However, the existing analytical approaches are inadequate at comprehensively describing the operation of narrow-bandgap semiconductors in these two processes. Furthermore, the distribution of the reactive sites on the electrode surface and the dynamic movement of carriers within these semiconductors during the reactions remain ambiguous.

View Article and Find Full Text PDF

Efficient low-strength diclofenac elimination via adsorption-concentration and peroxydisulfate activation mineralization by distinct pretreated biocarbon composites.

J Environ Manage

October 2024

School of Environment and Energy, South China University of Technology, Guangzhou, 510006, PR China; The Key Lab of Pollution Control and Ecosystem Restoration in Industry Cluster, Ministry of Education, Guangzhou, 510006, PR China; Guangdong Provincial Key Laboratory of Solid Wastes Pollution Control and Recycling, Guangzhou, 510006, PR China; Guangdong Environmental Protection Key Laboratory of Solid Waste Treatment and Recycling, Guangzhou, 510006, PR China.

Sodium diclofenac (DCF) widely exists in actual water matrices, which can negatively impact ecosystems and aquatic environments even at low-strength. Herein, the adsorption-concentration-mineralization process was innovatively constructed for low-strength DCF elimination by freeze-dried biocarbon and oven-dried biocarbon coupled with cobalt oxide composites derived from the same waste biomass. Surprisingly, low-strength DCF of 0.

View Article and Find Full Text PDF

A Theoretical Exploration of the Photoinduced Breaking Mechanism of the Glycosidic Bond in Thymine Nucleotide.

Molecules

August 2024

Department of Interdisciplinary Engineering Sciences, Chemistry and Materials Science, Interdisciplinary Graduate School of Engineering Sciences, Kyushu University, 6-1 Kasuga Park, Fukuoka 816-8580, Japan.

DNA glycosidic bond cleavage may induce cancer under the ultraviolet (UV) effect. Yet, the mechanism of glycosidic bond cleavage remains unclear and requires more detailed clarification. Herein, quantum chemical studies on its photoinduced mechanism are performed using a 5'-thymidine monophosphate (5'-dTMPH) model.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!