Gaiella occulta strain F2-233 (=CECT 7815 = LMG 26412), isolated from a 150 meter deep mineral water aquifer, was deemed a candidate for high-quality draft genome sequencing because of the rare environment from which it was isolated. The draft genome sequence (QQZY00000000) of strain F2-233 is composed of approximately 3 Mb, predicted 3,119 protein-coding genes of which 2,545 were assigned putative functions. Genome analysis was done by comparison with the other deep-branching Actinobacteria neighbors Rubrobacter radiotolerans, Solirubrobacter soli and Thermoleophilum album. The genes for the tricarboxylic acid cycle, gluconeogenesis and pentose phosphate pathway, were identified in G. occulta, R. radiotolerans, S. soli and T. album genomes. Genes of the Embden-Meyerhof-Parnas pathway and nitrate reduction were identified in G. occulta, R. radiotolerans and S. soli, but not in the T. album genome. Alkane degradation is precluded by genome analysis in G. occulta. Genes involved in myo-inositol metabolism were found in both S. soli and G. occulta genomes. A Calvin-Benson-Bassham (CBB) cycle with a type I RuBisCO was identified in G. occulta genome, as well. However, experimental growth under several conditions was negative and CO fixation could not be proven in G. occulta.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6741124 | PMC |
http://dx.doi.org/10.1002/mbo3.840 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!