Protein posttranslational modifications critically regulate a range of physiological and disease processes. In addition to tyrosine, serine, and threonine phosphorylation, reversible N-ε acylation and alkylation of protein lysine residues also modulate diverse aspects of cellular function. Studies of lysine acyl and alkyl modifications have focused on nuclear proteins in epigenetic regulation; however, lysine modifications are also prevalent on cytosolic proteins to serve increasingly apparent, although less understood roles in cell regulation. Here, the methyl-lysine (meK) proteome of anucleate blood platelets is characterized. With high-resolution, multiplex MS methods, 190 mono-, di-, and tri-meK modifications are identified on 150 different platelet proteins-including 28 meK modifications quantified by tandem mass tag (TMT) labeling. In addition to identifying meK modifications on calmodulin (CaM), GRP78 (HSPA5, BiP), and EF1A1 that have been previously characterized in other cell types, more novel modifications are also uncovered on cofilin, drebin-like protein (DBNL, Hip-55), DOCK8, TRIM25, and numerous other cytoplasmic proteins. Together, the results and analyses support roles for lysine methylation in mediating cytoskeletal, translational, secretory, and other cellular processes. MS data for this study have been deposited into the ProteomeXchange Consortium via the PRIDE partner repository with the dataset identifier PXD012217.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7062300 | PMC |
http://dx.doi.org/10.1002/pmic.201900001 | DOI Listing |
Epigenetics Chromatin
January 2025
Univ Lyon, Université Lyon 1, INSERM, Stem Cell and Brain Research Institute U1208, INRAE USC 1361, Bron, F-69500, France.
Post-translational modifications of histone H3 on lysine 9, specifically acetylation (H3K9ac) and tri-methylation (H3K9me3), play a critical role in regulating chromatin accessibility. However, the role of these modifications in lineage segregation in the mammalian blastocyst remains poorly understood. We demonstrate that di- and tri-methylation marks, H3K9me2 and H3K9me3, decrease during cavitation and expansion of the rabbit blastocyst.
View Article and Find Full Text PDFCancers (Basel)
December 2024
Hugo W. Moser Research Institute at Kennedy Krieger, Baltimore, MD 21205, USA.
: CSCs are critical drivers of the tumor and stem cell phenotypes of glioblastoma (GBM) cells. Chromatin modifications play a fundamental role in driving a GBM CSC phenotype. The goal of this study is to further our understanding of how stem cell-driving events control changes in chromatin architecture that contribute to the tumor-propagating phenotype of GBM.
View Article and Find Full Text PDFCurr Mol Med
January 2025
Department of Gynaecology and Obstetrics, The First Affiliated Hospital of Ningbo University, No.59 Liuting Street, Haishu District, Ningbo City, Zhejiang Province, 315010, China.
Background: Ovarian cancer is one of the deadliest gynecologic cancers, with chemotherapy resistance as the greatest clinical challenge. Autophagy occurrence is associated with cisplatin (DDP)-resistant ovarian cancer cells. Herein, the role and mechanism of alpha-synuclein (SNCA), the autophagy-related gene, in DDP resistance of ovarian cancer cells are explored.
View Article and Find Full Text PDFGrowing evidence shows that lysine methylation is a widespread protein post-translational modification (PTM) that regulates protein function on histone and nonhistone proteins. Numerous studies have demonstrated that the dysregulation of lysine methylation mediators contributes to cancer growth and chemotherapeutic resistance. While changes in histone methylation are well-documented with extensive analytical techniques available, there is a lack of high-throughput methods to reproducibly quantify changes in the abundances of the mediators of lysine methylation and nonhistone lysine methylation (Kme) simultaneously across multiple samples.
View Article and Find Full Text PDFTher Adv Med Oncol
January 2025
Department of Molecular Biology of Cancer, Medical University of Lodz, Mazowiecka 6/8, Lodz 92-215, Poland.
The enhancer of zeste homolog 2 (EZH2) is a catalytic component of Polycomb repressive complex 2 (PRC2) mediating the methylation of histone 3 lysine 27 (H3K27me3) and hence the epigenetic repression of target genes, known as canonical function. Growing evidence indicates that EZH2 has non-canonical roles that are exerted as PRC2-dependent and PRC2-independent methylation of non-histone proteins, and methyltransferase-independent interactions of EZH2 with various proteins contributing to gene expression regulation and alterations in the protein stability. is frequently mutated and/or its expression is deregulated in various cancer types.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!