Remodeling of reactive lymph nodes: Dynamics of stromal cells and underlying chemokine signaling.

Immunol Rev

Institut National de la Santé et de la Recherche Médicale (INSERM), Centre National de la Recherche Scientifique (CNRS), Centre d'Immunologie de Marseille-Luminy (CIML), Aix-Marseille University, Marseille, France.

Published: May 2019

Lymph nodes (LNs) are secondary immune organs dispersed throughout the body. They are primarily composed of lymphocytes, "transient passengers" that are only present for a few hours. During this time, they extensively interact with a meshwork of stromal cells. Although these cells constitute less than 5% of all LN cells, they are integral to LN function: Stromal cells create a three-dimensional network that provides a rigid backbone for the transport of lymph and generates "roads" for lymphocyte migration. Beyond structural support, the LN stroma also produces survival signals for lymphocytes and provides nutrients, soluble factors, antigens, and immune cells collectively required for immune surveillance and the generation of adaptive immune responses. A unique feature of LNs is their ability to considerably and rapidly change size: the volume and cellularity of inflamed LNs can increase up to 20-fold before returning to homeostatic levels. This cycle will be repeated many times during life and is accommodated by stromal cells. The dynamics underlying this dramatic remodeling are subject of this review. We will first introduce the main types of LN stromal cells and explain their known functions. We will then discuss how these cells enable LN growth during immune responses, with a particular focus on underlying cellular mechanisms and molecular cues. Similarly, we will elaborate on stromal dynamics mediating the return to LN homeostasis, a process that is mechanistically much less understood than LN expansion.

Download full-text PDF

Source
http://dx.doi.org/10.1111/imr.12750DOI Listing

Publication Analysis

Top Keywords

stromal cells
20
cells
9
lymph nodes
8
immune responses
8
stromal
6
immune
5
remodeling reactive
4
reactive lymph
4
nodes dynamics
4
dynamics stromal
4

Similar Publications

Purpose: The aggressive nature of a tumor is presumably its inherent one, but different environmental cues can manipulate it in many ways. In this context, the influence of metabolic stresses on tumor behavior needs to be analyzed to understand their far-reaching implications on tumor aggression and dormancy. This work investigates different facets of the tumor, such as tumorigenic capacity, tumor phenotype, and migration, under multiple metabolic stress conditions.

View Article and Find Full Text PDF

Nestin prevents mesenchymal stromal cells from apoptosis in LPS-induced lung injury via inhibition of unfolded protein response sensor IRE1α.

Life Med

December 2022

Centre for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-sen University, Guangzhou 510080, China.

The clinical applications of MSC therapy have been intensely investigated in acute respiratory distress syndrome. However, clinical studies have fallen short of expectations despite encouraging preclinical results. One of the key problems is that transplanted stem cells can hardly survive in the harsh inflammatory environment.

View Article and Find Full Text PDF

A deep learning framework for screening of anticancer drugs at the single-cell level.

Natl Sci Rev

February 2025

Bone Marrow Transplantation Center of the First Affiliated Hospital, and Center for Stem Cell and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou 310000, China.

Tumor heterogeneity plays a pivotal role in tumor progression and resistance to clinical treatment. Single-cell RNA sequencing (scRNA-seq) enables us to explore heterogeneity within a cell population and identify rare cell types, thereby improving our design of targeted therapeutic strategies. Here, we use a pan-cancer and pan-tissue single-cell transcriptional landscape to reveal heterogeneous expression patterns within malignant cells, precancerous cells, as well as cancer-associated stromal and endothelial cells.

View Article and Find Full Text PDF

Elucidating the developmental dynamics of mouse stromal cells at single-cell level.

Life Med

August 2022

Center for Stem Cell and Regenerative Medicine, Bone Marrow Transplantation Center of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310000, China.

View Article and Find Full Text PDF

The heterogeneity of ovarian mesenchymal/stromal cells has just been revealed in both mice and humans. However, it remains unclear about the cellular development trace and the intercellular communication network in the whole life of the ovary. In the study, we integrated ours and published single-cell RNA sequencing data from E11.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!