Thirteen phenothiazine compounds were separated chromatographically using high performance liquid chromatography with coulometric electrochemical detection. These could be extracted from brain tissue using direct homogenization in tetrahydrofuran followed by one centrifugation, evaporation of supernatant and reconstitution in water. Fluphenazine was used as the internal standard. The absolute lower limit of detection was approximately 50 pg/mg wet tissue, and recovery rates for most standards added to brain homogenates were greater than 85%. Chromatograms from patients receiving chlorpromazine (600 mg) and thioridazine (600 mg) are shown and endogenous brain levels quantified. The results are discussed with respect to their relevance in schizophrenic research.

Download full-text PDF

Source
http://dx.doi.org/10.1007/BF00179183DOI Listing

Publication Analysis

Top Keywords

electrochemical detection
8
hplc electrochemical
4
detection measure
4
measure chlorpromazine
4
chlorpromazine thioridazine
4
thioridazine metabolites
4
metabolites human
4
brain
4
human brain
4
brain thirteen
4

Similar Publications

This study aims to demonstrate that redox couples, regardless of their electrical charges, are unnecessary for detecting and quantifying electroactive proteins using an electrochemical sensor functionalized with a molecularly imprinted polymer. Our approach involved designing a polydopamine imprinted biosensor for detecting bovine serum albumin as the model protein. Electrochemical measurements were conducted in a phosphate-buffered solution (PBS) and solutions containing the negatively charged hexacyanoferrate, the neutral ferrocene, or the positively charged hexaammineruthenium (III) probes.

View Article and Find Full Text PDF

Biomimetic gastric microtissue electrochemical biosensors for ovalbumin detection.

Biosens Bioelectron

December 2024

College of Food Science and Engineering, Collaborative Innovation Center for Modern Grain Circulation and Safety, Key Laboratory of Grains and Oils Quality Control and Processing, Nanjing University of Finance and Economics, Nanjing, Jiangsu, 210023, PR China. Electronic address:

An innovative integrated three-dimensional (3D) bioprinted gastric microtissue electrochemical biosensor was developed in this study for the detection of allergen ovalbumin (OVA). In this system, OVA triggers the release of histamine from gastric microtissue, which then undergoes a redox reaction on the electrode surface, leading to an increase in the peak current. Gelatin methacrylate hydrogel serves as a scaffold for the 3D culture of RBL-2H3 and PC-12 cells for partially restoring allergic reactions in the human body in vitro.

View Article and Find Full Text PDF

A label-free electrochemical biosensor for sensitive analysis of the PARP-1 activity.

Bioelectrochemistry

December 2024

School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China. Electronic address:

Early diagnosis of tumors is becoming increasingly important in modern healthcare. As studies have demonstrated, Poly(ADP)ribose polymerase-1 (PARP-1) is overexpressed in more aggressive tumors. Consequently, sensitive detection of PARP-1 activity holds significant practical importance in clinical diagnostics and biomedical research.

View Article and Find Full Text PDF

Electrochemiluminescence (ECL) is nowadays a powerful technique widely used in biosensing and imaging, offering high sensitivity and specificity for detecting and mapping biomolecules. Screen-printed electrodes (SPEs) offer a versatile and cost-effective platform for ECL applications due to their ease of fabrication, disposability, and suitability for large-scale production. This research introduces a novel method for improving the ECL characteristics of screen-printed carbon electrodes (SPCEs) through the application of CO laser treatment following fabrication.

View Article and Find Full Text PDF

Low background catalytic redox recycling coupled with hybridization chain reaction amplification for highly sensitive electrochemical aptamer luteinizing hormone assay.

Bioelectrochemistry

December 2024

Key Laboratory of Luminescence Analysis and Molecular Sensing, Ministry of Education, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, PR China.

The concentration variation of luteinizing hormone (LH) regulates the cell cycle of oocyte meiosis and significantly affect the whole reproductive cycle. Sensitively quantifying the LH biomarker therefore plays an important role for reproductive disease diagnosis. By coupling a new low background catalytic redox recycling strategy with hybridization chain reaction (HCR), we propose a highly sensitive bio-electrochemical aptamer LH sensing method.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!